题目:

1183 编辑距离

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

例如将kitten一字转成sitting:

sitten (k->s)

sittin (e->i)

sitting (->g)

所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。

给出两个字符串a,b,求a和b的编辑距离。

Input

第1行:字符串a(a的长度 <= 1000)。

第2行:字符串b(b的长度 <= 1000)。

Output

输出a和b的编辑距离

Input示例

kitten

sitting

Output示例

3

分析:

首先, 对于一个状态
Dp[i][j] = min(Dp[i-1][j], min(Dp[i][j-1], Dp[i-1][j-1])) + 1;
对于当前状态, 往任何一个串后添加一个字符, 所需要的操作数 + 1的。(先不讨论相等, 不相等。)
如果 a[i] == b[j] , Dp[i][j] = min(Dp[i][j], Dp[i-1][j-1]);
两个字符相等是不需要添加任何操作的。

实现:

#include <bits/stdc++.h>

using namespace std;

const int maxn = 1000 + 131;

int Dp[maxn][maxn];

int Solve(const string& a, const string& b) {
int n = a.length();
int m = b.length();
for(int i = 0; i < n; ++i) Dp[i][0] = i;
for(int i = 0; i < m; ++i) Dp[0][i] = i;
///
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) {
Dp[i][j] = min(Dp[i-1][j], min(Dp[i][j-1], Dp[i-1][j-1])) + 1;
if(a[i-1] == b[j-1])
Dp[i][j] = min(Dp[i][j], Dp[i-1][j-1]);
}
return Dp[n][m];
} int main() {
string s, t;
while(cin >> s >> t) {
cout << Solve(s, t) << endl;
}
}

51nod--1183 编辑距离(动态规划)的更多相关文章

  1. 51nod 1183 编辑距离(dp)

    题目链接:51nod 1183 编辑距离 #include<cstdio> #include<cstring> #include<algorithm> using ...

  2. 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...

  3. 51nod 1183 编辑距离【线性dp+类似最长公共子序列】

    1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  4. 51NOD 1183编辑距离(动态规划)

    >>点击进入原题测试<< 思路:这个题放在基础题,分值还是零分,好歹也给人家动态规划一点面子啊!刚开始写的想法是找到其最大公共字串,然后用两个字符串中最长字符串的长度减掉最大公 ...

  5. 51nod 1183 编辑距离

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183. 题意不再赘述. 分析:大概和LCS差不多的吧   但是我用LCS ...

  6. (DP)51NOD 1183 编辑距离

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  7. 51Nod 1183 编辑距离 (字符串相似算法)

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  8. 动态规划 51nod 1183

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 1183 编辑距离  基准时间限制:1 秒 空间限制:1 ...

  9. 51 Nod 1183 编辑距离 (动态规划基础)

    原题链接:1183 编辑距离 题目分析:这个最少的操作次数,通常被称之为编辑距离."编辑距离"一次本身具有最短的意思在里面.因为题目有"最短"这样的关键词,首先 ...

  10. 51nod 简单的动态规划

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

随机推荐

  1. 设置 iOS 应用的图标和名称

    Xcode 8.1 设置 iOS 应用的图标和名称的方法: 设置应用图标: 1.在 Resources 中添加图片: 2.在 Icon file 的属性值填写图标文件的名称. 设置应用名: 1.修改 ...

  2. source 源码下载

    http://blog.csdn.net/zlgydx/article/details/50781258 经常需要查看某些第三方的源码,一直在用的一个网站,功能比较简介.好用. http://grep ...

  3. java连接mysql(一)

    import java.sql.*; public class MysqlTest { public static void main(String[] args) throws SQLExcepti ...

  4. C++@子类类型转换为父类类型

    static_cast(*this) to a base class create a temporary copy. class Window { // base class public: vir ...

  5. 用C++实现网络编程---抓取网络数据包的实现方法

    一般都熟悉sniffer这个工具,它可以捕捉流经本地网卡的所有数据包.抓取网络数据包进行分析有很多用处,如分析网络是否有网络病毒等异常数据,通信协议的分析(数据链路层协议.IP.UDP.TCP.甚至各 ...

  6. Lock与synchronized 的区别

    多次思考过这个问题,都没有形成理论,今天有时间了,我把他总结出来,希望对大家有所帮助 1.ReentrantLock 拥有Synchronized相同的并发性和内存语义,此外还多了 锁投票,定时锁等候 ...

  7. 没有闲话和grunt.initConfig()

    grunt.initConfig()为Gruntfile.js的核心部分,它接收对象作为参数. 对象包含两种类型的属性,一种是单纯的变量,一种是task类型.举个栗子: grunt.initConfi ...

  8. Python数据库查询之组合条件查询-F&amp;Q查询

    F查询(取字段的值) 关于查询我们知道有filter( ) ,values( ) , get( ) ,exclude( ) ,如果是聚合分组,还会用到aggregate和annotate,甚至还有万能 ...

  9. JAVA 四舍五入Math.round方法

    今天由于测试场景,利息的计算中涉及小数点的保留.保留的规则是:两位小数+四舍五入方式 使用的语言是JAVA, 看了许多网上的方法.因为最后保留的小数还会进行计算.所以我考虑最好不要保留的结果是Stri ...

  10. RIDE安装操作

    转载参考https://www.cnblogs.com/Ming8006/p/4998492.html 一.python安装 1.访问Python官网:https://www.python.org/  ...