Toy Storage
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5439   Accepted: 3234

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore. 
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top: 

We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1

Source

我的“第一道”计算几何题=ω=

判断点在直线的哪一侧,机智地用了叉积

叉积同号代表在直线同侧,异号则在异侧,在直线上则为零。

//POJ 2398
//利用叉积判断点与直线位置关系
//C++11特性在ACM中不能用
//AC 2016.10.12 #include "cstdio"
#include "cstdlib"
#include "cmath"
#include "cstring"
#include "iostream"
#define MAXN 5010
#define MAXM 5010
using namespace std;
const double eps = 1E-8; int sgn(double x){
return (fabs(x)<eps)?0:((x>0)?1:-1);
} struct point{
double x, y;
point (){}
point (double X, double Y): x(X), y(Y){}
point operator - (const point &p){
return point(x - p.x, y - p.y);
}
double operator ^ (const point &p){
return x * p.y - y * p.x;
}
}toys[MAXM]; struct line {
point p1, p2;
line (){}
line (point P1, point P2): p1(P1), p2(P2) {}
}lines[MAXN]; template <typename T>
void swp(T &l1, T &l2){
T l = l1;
l1 = l2;
l2 = l;
} template <typename T>
void BubbleSort(T arr[], int n, bool (*cmp)(T, T)){
for (int i = 0; i < n; i++){
for (int j = 0; j < i; j++){
if (!cmp(arr[j], arr[i]))
swp<T>(arr[j], arr[i]);
}
}
} bool cmpline(line l1, line l2){
return l1.p1.x <= l2.p1.x;
} bool cmpint(int a, int b){
return a <= b;
} int n, m, X1, Y1, X2, Y2;
int ans[MAXN];
int main(){
freopen("fin.c", "r", stdin);
while (scanf("%d%d%d%d%d%d", &n, &m, &X1, &Y1, &X2, &Y2)){
if (!n) break;
puts("Box");
memset(ans, 0, sizeof (ans));
lines[0] = line(point(X1, Y1), point(X1, Y2));
for (int i = 1; i <= n; i++){
int u, l;
scanf("%d%d", &u, &l);
lines[i] = line(point(u, Y1), point(l, Y2));
}
lines[n + 1] = line(point(X2, Y1), point(X2, Y2));
BubbleSort<line>(lines, n + 2, cmpline);
for (int i = 0; i < m; i++){
int x, y;
scanf("%d%d", &x, &y);
toys[i] = point(x, y);
for (int j = 0; j <= n; j++){
double d1 = (lines[j].p2 - lines[j].p1) ^ (toys[i] - lines[j].p1);
double d2 = (lines[j + 1].p2 - lines[j + 1].p1) ^ (toys[i] - lines[j + 1].p1);
if (sgn(d1) != sgn(d2)){
ans[j]++;
break;
}
}
}
int avr = m/(n + 1);
BubbleSort<int>(ans, n + 1, cmpint);
for (int i = 0, cnt = 0, old = ans[0];
i <= n;
i++, cnt++, (ans[i] == old)?0:(old?printf("%d: %d\n", old, cnt):0, cnt = 0), old = ans[i]);
//puts("");
}
getchar();
return 0;
}

POJ 2398 - Toy Storage 点与直线位置关系的更多相关文章

  1. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  2. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  3. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  4. poj 2398 Toy Storage(计算几何 点线关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4588   Accepted: 2718 Descr ...

  5. POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3146   Accepted: 1798 Descr ...

  6. POJ 2398 Toy Storage (叉积判断点和线段的关系)

    题目链接 Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4104   Accepted: 2433 ...

  7. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  8. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

  9. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

随机推荐

  1. 没有了SA密码,无法Windows集成身份登录,DBA怎么办?

    一同事反馈SQL无法正常登录了,以前都是通过windows集成身份验证登录进去的(sa密码早忘记了),今天就改了服务器的机器名,现在无论如何都登录不进去. SQL登录时如果采用windows集成身份验 ...

  2. angularjs 自定义服务的三种方式

    angularjs 中可通过三种($provider,$factory,$service)方式自定义服务,以下是不同的实现形式: // 定义module , module中注入$providevar ...

  3. WPF入门教程系列二十——ListView示例(二)

    第四步.WPF后台逻辑代码编写 在后台用Entity Framework 6.1的Code First方式获取数据库中的数据.同时,在“刷新”按钮的方法中进行数据绑定.操作步骤如下: 1)  在“刷新 ...

  4. 取消IDEA中光标“指哪打哪”模式

    很简单,在Settings->Editor里面去掉Allow placement of caret after end of line

  5. css实现梯形(各种形状)的网页布局——transform的妙用

    在各式各样的网页中,经常会看到形状特别的布局,比如说下面的这种排版方式: 这种视觉上的效果,体验十分好.那么他是如何来实现的呢,博主在这里整理了如下2种实现的方式. 1.通过给 div 加border ...

  6. linux中使用ps -ef

    常操作linux系统的都会用到:ps -ef 命令,是一个非常强大的进程查看命令. 在训练模型中使用python,那么我会要看这个python相关的进程,可以使用如下命令”: ps -ef | fgr ...

  7. iOS - OC - 字典快速遍历

    1. [dic enumerateKeysAndObjectsUsingBlock:^(id  _Nonnull key, id  _Nonnull obj, BOOL * _Nonnull stop ...

  8. 【C++】类的两种实例化方法

    直接上代码: #include<stdio.h> #include<string> #include<iostream> using namespace std; ...

  9. (转)关于Unity3D的编辑器崩溃时的线索定位

    今天在Unity3D编辑器中进行功能测试的时候,编辑器突然崩溃了(就是整个窗口突然消失,进程直接结束)之后也没有任何错误报告信息提示.好吧,应该是偶现问题,我侥幸地想,我用的好歹也是正版啊,不应该总出 ...

  10. js对象引用的注意

    var p = {}; var arr = []; function a(param) { // var i = param.a; for (var i = 0; i < 3; i++) { p ...