组合数

组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数。

求解方式

求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\right) !}$

性质1:$C^{m}_{n}=C_{n}^{n-m}$

性质2:$C^{m}_{n}=C^{m-1}_{n-1}-i+C^{m}_{n-1}$

打表递推

根据性质2:$C^{m}_{n}=C^{m-1}_{n-1}+C^{m}_{n-1}$

组合数算出来特别大,往往都会要求取余,这里取$P=1e9+7$。时间复杂度$O(n^2)$

;
#define N 1000
int comb[N][N];

int main() {
    ; i < N; i++) {
        comb[i][] = comb[i][i] = ;
        ; j < i; j++) {
            comb[i][j] = comb[i - ][j] + comb[i - ][j - ];
            comb[i][j] %= P;
            //cout << comb[i][j] << endl;
        }
    }
}

逆元法

因为大部分题都有求余,可利用逆元的原理(没求余的题目,自己找一个比较大的素数作为P,也可以用逆元做)

线性递推求逆元

当$p$为质数时有$a^{-1}=(p-[p/a])\cdot (p\%a)^{-1}\%p$

求阶乘的逆元

根据通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\right) !}$,有$C^{m}_{n}=n!\cdot inv[m!] \cdot inv[(n-m)!]$

设 $finv(i)=inv(i\ !)$

则根据:$finv(i-1)=\frac{1}{\ (i-1)\ !}=\frac{1}{i\ !}\times i =finv(i)\times i$

有:$finv(i) = finv(i-1)\times inv(i)$

详见:数论篇4——逆元(数论倒数)

初始化时间复杂度$O(n)$,求$C^{m}_{n}$为$O(1)$

;
;
], Finv[N+], inv[N+];//fact是阶乘,Finv是阶乘的逆元
void init() {
    inv[] = ;
    //线性递推求逆元
    ; i <= N; i++) {
        inv[i] = (P - P / i) * 1ll * inv[P % i] % P;
    }
    fact[] = Finv[] = ;
    ; i < N; i++) {
        fact[i] = fact[i - ] * 1ll * i % P;//求阶乘
        Finv[i] = Finv[i - ] * 1ll * inv[i] % P;//求阶乘的逆元
    }
}
int C(int n, int m) {//comb(n, m)就是C(n, m)
     || m > n) ;
    return fact[n] * 1ll * Finv[n - m] % P * Finv[m] % P;
}

卢卡斯定理

现在有了新问题,如果$n$和$m$非常大,$p$为素数,比如求$C_n^m \% p \ ,\ n\leqslant 10^{18},m\leqslant 10^{18},p\leqslant 10^{9}$

$C_n^m\ \%\ p  =  C(n / p, m / p) * C(n\ \%\ p, m\ \%\ p)\ \%\  p$

或者写成这样更准确$Lucas(n,m)\ \%\ p=Lucas(n/p,m/p)*C(n\ \%\ p,m\ \%\ p)\ \%\ p$

证明请看此 lucas_百度百科,没仔细看证明,所以对不对我也不知道。

写成递归,代码就这么短:

LL Lucas(LL n, LL m, int p){
         ;
}

具体C的实现要看情况。

P较小时,打表

typedef long long ll;
const int N = 1e5 ;
;//取一个小于N的素数
ll fact[P + ], inv[P + ], Finv[P + ];//阶乘打表

void init() {
    inv[] = ;
    //线性递推求逆元
    ; i <= P; i++) {
        inv[i] = (P - P / i) * 1ll * inv[P % i] % P;
    }
    fact[] = Finv[] = ;
    ; i < P; i++) {
        fact[i] = fact[i - ] * 1ll * i % P;//求阶乘
        Finv[i] = Finv[i - ] * 1ll * inv[i] % P;//求阶乘的逆元
    }
}

ll C(ll n, ll m){//组合数C(n, m) % p
    ;
    return fact[n] * Finv[n - m] % P * Finv[m] % P;
}
ll Lucas(ll n, ll m){
    ;
}

P较大时,没法打表,用快速幂算逆元

typedef long long ll;

const int N = 1e9 ;
;

ll quickPower(ll a, ll b) {
    ll res = ;
    a %= P;
    while (b) {
        )res = (res % P) * (a % P) % P;
        a = (a % P) * (a % P) % P;
        b >>= ;
    }
    return res;
}
ll inv(ll x) {//x关于p的逆元,p为素数
    );
}
ll C(ll n, ll m) {
    ;
    ll up = , down = ;//分子分母;
    ; i <= n; i++)
        up = up * i % P;
    ; i <= m; i++)
        down = down * i % P;
    return up * inv(down) % P;
}
ll Lucas(ll n, ll m) {
    );
    return C(n % P, m % P) * Lucas(n / P, m / P) % P;
}

数论篇7——组合数 & 卢卡斯定理(Lucas)的更多相关文章

  1. 卢卡斯定理Lucas

    卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...

  2. ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω&#180;-) )

    记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p  , n<=1e18,m<=1e18 ...

  3. 卢卡斯定理 Lucas (p为素数)

    证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...

  4. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  5. CRT中国剩余定理 &amp; Lucas卢卡斯定理

    数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...

  6. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  7. 【Luogu3807】【模板】卢卡斯定理(数论)

    题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...

  8. 【UOJ#275】组合数问题(卢卡斯定理,动态规划)

    [UOJ#275]组合数问题(卢卡斯定理,动态规划) 题面 UOJ 题解 数据范围很大,并且涉及的是求值,没法用矩阵乘法考虑. 发现\(k\)的限制是,\(k\)是一个质数,那么在大组合数模小质数的情 ...

  9. 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】

    -我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...

随机推荐

  1. nodejs基于art-template模板引擎生成

    基础核心代码 var template = require('art-template'); var tName = new Date().getTime(); var htmlT = '<!D ...

  2. [openwrt 项目开发笔记]: 传送门

    “Openwrt 项目开发笔记”系列传送门: [Openwrt 项目开发笔记]:Openwrt平台搭建(一) (2014-07-11 00:11) [Openwrt 项目开发笔记]:Openwrt平台 ...

  3. Android Studio使用教程(二)

    以下是本次Google I/O大会发布的IDE Android Studio使用教程第二篇: 在Android Studio使用教程(一)中简要介绍了Android Studio的基本使用,包括安装. ...

  4. 使用Aspose.Word的基础知识整理

    var doc = new Document(path);     doc.AcceptAllRevisions();//接受所有修订

  5. iOS App转让流程

    说法一: (1)选择转让APP (2)进入转让界面       点击Continue进入下一步   (3)输入对方的APP ID和Team ID     Apple ID 和 Team ID 可以在m ...

  6. 免费SVN源代码在线托管

    免费的SVN源代码在线托管网站很多,用的最多的是TaoCode吧.但是一般都要求开源,支持私有项目的普遍收费,要不就是流量很少,不够用.对比了一下,发现好库正好能满足需要. 网址: http://ww ...

  7. EC读书笔记系列之17:条款41、42、43、44、45、46

    条款41 了解隐式接口与编译器多态 记住: ★classes和templates都支持接口和多态 ★对classes而言接口是显式的(explicit),以函数签名为中心.多态则是通过virtual函 ...

  8. 在asp.net web api 2 (ioc autofac) 使用 Serilog 记录日志

    Serilog是.net里面非常不错的记录日志的库,另外一个我认为比较好的Log库是NLog. 在我个人的asp.net web api 2 基础框架(Github地址)里,我原来使用的是NLog,但 ...

  9. Pycharm自动添加文件头

    Pycharm自动添加文件头 在编程的时候,我们往往需要在文件头里添加一些编码和作者信息,在Pycharm中,系统给我们自带了这一功能,可以做如下设置: 打开设置 在设置中找到如下选项: 然后在编辑框 ...

  10. 最长公共子序列(LCS)最长递增子序列(LIS)

    #include<cstring>#include<iostream>#include<stack>#include <algorithm>using ...