并查集算法,也叫Union-Find算法,主要用于解决图论中的动态连通性问题。

Union-Find算法类

这里直接给出并查集算法类UnionFind.class,如下:

/**
* Union-Find 并查集算法
* @author Chiaki
*/
public class UnionFind {
// 连通分量个数
private int count;
// 存储若干棵树
private int[] parent;
// 记录树的"重量"
private int[] size; // 构造函数
public UnionFind(int count) {
this.count = count;
parent = new int[count];
size = new int[count];
for (int i = 0; i < count; i++) {
parent[i] = i;
size[i] = 1;
}
} // 连通函数
public void union(int p, int q) {
// 如果节点p和q已经连接,直接返回
if (connected(p,q)) return;
// 找到节点p和节点q的根节点
int rootP = find(p);
int rootQ = find(q);
if (size[rootP] > size[rootQ]) {
parent[rootQ] = rootP;
size[rootP] += size[rootQ];
} else {
parent[rootP] = rootQ;
size[rootQ] += size[rootP];
}
count--;
} // 判断是否连通
public boolean connected(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
} // 寻找根节点
public int find(int x) {
while (parent[x] != x) {
parent[x] = parent[parent[x]];
x = parent[x];
}
return x;
} // 返回连通分量个数
public int count() {
return count;
}
}

下面逐步解释Union-Find算法类中的变量定义以及相关函数。

成员变量

可以看到该类中定义了三个成员变量,分别是int countint[] parent以及int[] size

int count:可以理解为连通分量的个数。

如上左图所示,共有10个节点(分量),此时连通分量的个数为10。如上右图所示,在进行连通操作(union)后,分量之间存在了连接关系(connected),因此此时的连通分量个数为6。

int[] parent:定义父节点数组。说到父节点数组,这里使用多棵树来表示连通性。规定树中的每个节点都有一个指针指向其父节点。一开始没有连通,此时每个节点指向父节点的指针都是指向自己,也就是根节点;当两个节点被连通,就让其中的任意一个节点的根节点接到另一个节点的根节点上,如下图所示。

此时,可以得到:若节点p和节点q连通,那么它们一定有相同的根节点。

int[] size:记录每一棵树中节点的数量,称之为树的重量,以此方便对树的平衡性进行优化。如上张图所示,如果要把节点3和节点7连接(union),此时树的情况如下图所示:

此时,可以看出,树的平衡性出现了问题,因此我们需要借助树的重量,即int[] size数组对节点的连接操作(union)进行平衡性优化。

构造函数

UnionFind类构造函数的参数为int n,即初始的节点数目,亦即初始连通分量的个数。在进行初始化操作时,主要是初始化父节点数组int[] parent以及每棵树中节点的数目数组int[] size。在初始情况下,每个节点的父节点都是自身,而每棵树中节点的个数都是1,因此构造函数如下:

public UnionFind(int count) {
this.count = count;
parent = new int[count];
size = new int[count];
for (int i = 0; i < count; i++) {
parent[i] = i;
size[i] = 1;
}
}

其他函数

在上面的介绍中,我们知道,在UnionFind类中最重要的操作就是连接(union)操作。然而,在将节点p和节点q连接时,需要把一个节点(假定为节点p)的指针指向另一个节点(假定为节点q)的父节点,因此,我们需要先实现一个int find(int x)函数来找到一个节点的父节点,如下所示:

public int find(int x) {
while (parent[x] != x) {
parent[x] = parent[parent[x]];
x = parent[x];
}
return x;
}

另外,实现boolean connected(int p, int q)函数判断节点p和节点q是否处于连接状态,如下:

public boolean connected(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
}

在实现int find(int x)函数和boolean connected(int p, int q)函数后,接下来要实现最关键的连接操作,即void union(int p, int q)函数,如下所示:

public void union(int p, int q) {
// 如果节点p和q已经连接,直接返回
if (connected(p,q)) return;
// 找到节点p和节点q的根节点
int rootP = find(p);
int rootQ = find(q);
// 根据size数组进行平衡化操作:小树接到大树下
if (size[rootP] > size[rootQ]) {
parent[rootQ] = rootP;
size[rootP] += size[rootQ];
} else {
parent[rootP] = rootQ;
size[rootQ] += size[rootP];
}
// 连接完成后,连通分量减一
count--;
}

最后,完成连通分量计数函数int count(),如下:

public int count() {
return count;
}

Union-Find算法应用

在介绍完并查集算法类UnionFind.class后,下面来看看该算法的应用。

朋友圈/好友关系问题

这个问题是并查集的一个典型应用,印象中猿辅导的算法手撕中这个题出现的频率比较高。问题描述如下:

LeetCode547

班上有 N 名学生。其中有些人是朋友,有些则不是。他们的友谊具有是传递性。如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友。所谓的朋友圈,是指所有朋友的集合。

给定一个 N * N 的矩阵 M,表示班级中学生之间的朋友关系。如果 M[i][j]= 1 ,表示已知第 i 个和 j 个学生互为朋友关系,否则为不知道。你必须输出所有学生中的已知的朋友圈总数。输入输出示例如下:

输入:

[[1,1,0],

[1,1,0],

[0,0,1]]

输出:2

利用并查集来解决该问题(假设UnionFind.class已定义,下同),如下:

class Solution {
public int findCircleNum(int[][] M) {
int n = M.length;
UnionFind uf = new UnionFind(n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (M[i][j] == 1) uf.union(i, j);
}
}
return uf.count();
}
}

岛屿数量

岛屿数量问题其实也是互联网大厂常问的题目之一,除了采用DFS来实现,并查集也可以用于解决这类问题。问题描述如下:

LeetCode200

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。此外,你可以假设该网格的四条边均被水包围。输入输出示例如下:

输入:grid = [

["1","1","1","1","0"],

["1","1","0","1","0"],

["1","1","0","0","0"],

["0","0","0","0","0"]

]

输出:1

采用并查集方法解决:

class Solution {
public int numIslands(char[][] grid) {
int r = grid.length;
if (r == 0) return 0;
int c = grid[0].length;
int size = r * c;
// 方向数组(向下和向右的坐标偏移)
int[][] directions = {{1, 0}, {0, 1}};
// +1表示虚拟水域,认为网格四条边被水包围
UnionFind uf = new UnionFind(size + 1);
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
if (grid[i][j] == '1') {
for (int[] direction : directions) {
int newX = i + direction[0];
int newY = j + direction[1];
if (newX < r && newY < c && grid[newX][newY] == '1') {
uf.union(c * i + j, c * newX + newY);
}
}
} else {
// 如果不是陆地,则所有水域与虚拟水域连接
uf.union(c * i + j, size);
}
}
}
// 减去虚拟水域
return uf.count() - 1;
}
}

等式方程的可满足性

题目描述如下:

LeetCode990

给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同形式之一:a==ba!=b。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。

只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。 输入输出示例如下:

输入:[ab, bc, a==c]

输出:true

输入:[ab, b!=c, ca]

输出:false

采用并查集算法解决该问题,如下:

class Solution {
public boolean equationsPossible(String[] equations) {
// 可能出现的26个字母
UnionFind uf = new UnionFind(26);
// 将相等的字母进行连接
for (String e : equations) {
if (e.charAt(1) == '=') {
char x = e.charAt(0);
char y = e.charAt(3);
uf.union(x - 'a', y - 'a');
}
}
// 若已经成立的相等关系被打破就返回false
for (String e : equations) {
if (e.charAt(1) == '!') {
char x = e.charAt(0);
char y = e.charAt(3);
if (uf.connected(x - 'a', y - 'a')) return false;
}
}
return true;
}
}

Union-Find算法的简单总结

并查集算法主要是解决图中的动态连通性问题。对于类似岛屿数量的问题,注意在初始化并查集时做到+1来表示一个虚拟节点,同时对于其中的二维数组可以采用方向数组int[] directions = {{1, 0}, {0, 1}}来规范和简化代码。对于等式方程的可满足性,主要是利用了并查集算法的等价特点。

参考

labuladong在leetcode547的题解

并查集算法Union-Find的思想、实现以及应用的更多相关文章

  1. Union-Find 并查集算法

    一.动态连通性(Dynamic Connectivity) Union-Find 算法(中文称并查集算法)是解决动态连通性(Dynamic Conectivity)问题的一种算法.动态连通性是计算机图 ...

  2. 第三十一篇 玩转数据结构——并查集(Union Find)

    1.. 并查集的应用场景 查看"网络"中节点的连接状态,这里的网络是广义上的网络 数学中的集合类的实现   2.. 并查集所支持的操作 对于一组数据,并查集主要支持两种操作:合并两 ...

  3. 并查集(Union Find)的基本实现

    概念 并查集是一种树形的数据结构,用来处理一些不交集的合并及查询问题.主要有两个操作: find:确定元素属于哪一个子集. union:将两个子集合并成同一个集合. 所以并查集能够解决网络中节点的连通 ...

  4. hdu 1232 畅通工程(并查集算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232 畅通工程 Time Limit: 4000/2000 MS (Java/Others)    M ...

  5. 并查集 (Union Find ) P - The Suspects

    Severe acute respiratory syndrome (SARS), an atypical pneumonia of unknown aetiology, was recognized ...

  6. Union-Find(并查集): Quick union算法

    Quick union算法 Quick union: Java implementation Quick union 性能分析 在最坏的情况下,quick-union的find root操作cost( ...

  7. Union-Find(并查集): Quick union improvements

    Quick union improvements1: weighting 为了防止生成高的树,将smaller tree放在larger tree的下面(smaller 和larger是指number ...

  8. hdu 1213 How Many Tables(并查集算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1213 How Many Tables Time Limit: 2000/1000 MS (Java/O ...

  9. 【lazy标记得思想】HDU3635 详细学习并查集

    部分内容摘自以下大佬的博客,感谢他们! http://blog.csdn.net/dm_vincent/article/details/7769159 http://blog.csdn.net/dm_ ...

随机推荐

  1. 翻唱曲练习:龙珠改主题曲 【Dragon Soul】龙之魂

    首先这是个人翻唱曲: 这个是原版(燃): 伴奏:  翻唱合成为动漫AMV 出镜翻唱: 全民K歌链接: http://kg.qq.com/node/play?s=aYpbMWb6UwoU&g_f ...

  2. js动态添加事件-事件委托

    作者:白狼 出处:http://www.manks.top/javascript-dynamic-event.html 本文版权归作者,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给 ...

  3. selenium获取多窗口句柄并一一切换至原窗口句柄(三个窗口)

    网上有很多是selenium基于python来获取两个窗口句柄与切换,本文实现用python+selenium获取多窗口句柄并一一切换至原窗口句柄(三个窗口),且在每个窗口下进行一个搜索或翻译,然后截 ...

  4. Android-----输入法的显示和隐藏

    /** * 控制手机虚拟键盘的显示和隐藏 */public class InputMethodUtil { /** * 隐藏虚拟键盘 * @param v  参数v为获取焦点对象view */ pub ...

  5. 简单的web三层架构系统【第二版】

    昨天写了 web三层架构的第一版,准确的说是三层架构的前期,顶多算是个二层架构,要慢慢完善. 第一版里,程序虽说能运行起来,但是有一个缺陷,就是里面的SQL语句,是使用的拼接字符进行执行.这样安全系数 ...

  6. Java设计模式之《职责链模式》及应用场景

    原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/6530089.html 职责链模式(称责任链模式)将请求的处理对象像一条长链一般组合起来,形 ...

  7. 第一次使用zxxbox弹层经历

    一:首先这个插件是基于JQuery的插件,要先导入JQuery,然后再导入这个插件 二:HTML部分 <a href="http://www.jisuapi.com/static/im ...

  8. Python module : simuPOP

    conda config --add channels conda-forge conda install simupop simuPOP is a general-purpose individua ...

  9. 洛谷P4197 Peaks&amp;&amp;克鲁斯卡尔重构树学习笔记(克鲁斯卡尔重构树+主席树)

    传送门 据说离线做法是主席树上树+启发式合并(然而我并不会) 据说bzoj上有强制在线版本只能用克鲁斯卡尔重构树,那就好好讲一下好了 这里先感谢LadyLex大佬的博客->这里 克鲁斯卡尔重构树 ...

  10. c++ 转化

    atof(将字符串转换成浮点型数)相关函数atoi,atol,strtod,strtol,strtoul表头文件#include定义函数double atof(const char *nptr);函数 ...