【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)
(这题在洛谷主站居然搜不到……还是在百度上偶然看到的)
题目描述
给一棵根为1的树,每次询问子树颜色种类数
输入输出格式
输入格式:
第一行一个整数n,表示树的结点数
接下来n-1行,每行一条边
接下来一行n个数,表示每个结点的颜色c[i]
接下来一个数m,表示询问数
接下来m行表示询问的子树
输出格式:
对于每个询问,输出该子树颜色数
说明
对于前三组数据,1<=m,c[i]<=n<=100
1<=m,c[i]<=n<=1e5
本来在学树上启发式合并,偶然看到这个题,就当模板来打了。
树上启发式合并(dsu on tree)是一种对静态子树节点信息的统计手段。和树上点分治一样,二者都是经过优化的暴力做法,启发式合并的复杂度可以从平方级别降到O(nlogn)。
启发式合并的思想源自暴力统计子树信息的过程。这题中,某棵树的每个点都有一个颜色,我们要多组询问统计某个点为根的子树内有多少种颜色。
这不是主席树乱搞嘛
考虑直接做这个题的话,我们想预处理出每个点的答案,可以直接从每个点出发做一次dfs统计得出答案后再dfs一遍,把它清空。这个显然的做法是O(n^2)的。
dsu on tree给出的优化策略是,我们想要统计某个点u,可以先遍历完它的轻儿子们,把这些点清空消去对重儿子的影响,后再去统计它的重儿子。这样得到的重儿子的信息我们还可以利用在u上,所以这时候我们保留重儿子的信息,再暴力地把它的轻儿子统计一遍来更新u的答案就可以了。
直观上看,每次特殊对待(只统计一次)的这个节点选择重儿子显然是最优的。启发式合并的复杂度经过证明可以达到O(nlogn);考虑每个点,这个点会被统计多少次呢?
1、通过轻边被扫到。根据轻重链的性质,这一步最多会有log次。
2、被遍历被扫到一次,或者藉由所在重链被扫到一次。是的,我们在合并的过程中遍历重链就像树剖的第二次dfs一样,每条重链只会被扫一次,因此这两种情况是O(1)的。
dsu on tree的复杂度得到了证明,我们可以愉快地用它来套做题了。需要强调的是,这个算法适用的是“静态统计子树信息”的问题。具体的遍历写法见代码:
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
- #include <cctype>
- #define maxn 100010
- using namespace std;
- template <class T>
- void read(T &x) {
- x = 0;
- char ch = getchar();
- while (!isdigit(ch))
- ch = getchar();
- while (isdigit(ch)) {
- x = x * 10 + (ch ^ 48);
- ch = getchar();
- }
- }
- int head[maxn], top = 1;
- struct E {
- int to, nxt;
- } edge[maxn << 1];
- inline void insert(int u, int v) {
- edge[++top] = (E) {v, head[u]};
- head[u] = top;
- }
- int n, m;
- int cnt[maxn], color[maxn], son[maxn], size[maxn], ans[maxn], NowSon, sum;
- void dfs1(int u, int pre) { //预处理子树大小
- size[u] = 1;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre) continue;
- dfs1(v, u);
- size[u] += size[v];
- if (size[son[u]] < size[v])
- son[u] = v;
- }
- }
- void cal(int u, int pre, int val) { //计算答案
- if (!cnt[color[u]]) ++sum;//在当前树中统计这种颜色
- cnt[color[u]] += val;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre || v == NowSon)//避开根的重儿子
- continue;
- cal(v, u, val);
- }
- }
- void dsu(int u, int pre, bool op) {//启发式合并的主体。op为 0表示这次操作由轻边遍历得到,需要清空
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre || v == son[u])
- continue;
- dsu(v, u, 0);//轻儿子
- }
- if (son[u])
- dsu(son[u], u, 1), NowSon = son[u];//重儿子
- cal(u, pre, 1); NowSon = 0;//重新扫描轻儿子,二次统计
- ans[u] = sum;//那么现在的颜色数就是u的信息
- if (!op) {//清空当前的统计数
- cal(u, pre, -1);
- sum = 0;
- }
- }
- int main() {
- read(n);
- int u, v;
- for (int i = 1; i < n; ++i) {
- read(u), read(v);
- insert(u, v), insert(v, u);
- }
- for (int i = 1; i <= n; ++i)
- read(color[i]);
- dfs1(1, 0);
- dsu(1, 0, 1);
- read(m);
- for (int i = 1; i <= m; ++i) {
- read(v);
- printf("%d\n", ans[v]);
- }
- return 0;
- }
【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)的更多相关文章
- 神奇的树上启发式合并 (dsu on tree)
参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...
- 树上启发式合并 (dsu on tree)
这个故事告诉我们,在做一个辣鸡出题人的比赛之前,最好先看看他发明了什么新姿势= =居然直接出了道裸题 参考链接: http://codeforces.com/blog/entry/44351(原文) ...
- CF600E Lomsat gelral——线段树合并/dsu on tree
题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...
- bzoj3307雨天的尾巴(权值线段树合并/DSU on tree)
题目大意: 一颗树,想要在树链上添加同一物品,问最后每个点上哪个物品最多. 解题思路: 1.线段树合并 假如说物品数量少到可以暴力添加,且树点极少,我们怎么做. 首先在一个树节点上标记出哪些物品有多少 ...
- 【LUOGU???】WD与数列 sam 启发式合并
题目大意 给你一个字符串,求有多少对不相交且相同的子串. 位置不同算多对. \(n\leq 300000\) 题解 先把后缀树建出来. DFS 整棵树,维护当前子树的 right 集合. 合并两个集合 ...
- 【Luogu】P1903数颜色(带修改莫队)
题目链接 带修改莫队模板. 加一个变量记录现在是第几次修改,看看当前枚举的询问是第几次修改,改少了就改过去,改多了就改回来. 话说我栈用成队列了能过样例?!!!! 从此深信一句话:样例是出题人精心设计 ...
- 【CF600E】Lomset gelral 题解(树上启发式合并)
题目链接 题目大意:给出一颗含有$n$个结点的树,每个节点有一个颜色.求树中每个子树最多的颜色的编号和. ------------------------- 树上启发式合并(dsu on tree). ...
- 牛客练习赛47 E DongDong数颜色 (树上启发式合并)
链接:https://ac.nowcoder.com/acm/contest/904/E 来源:牛客网 DongDong数颜色 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 5242 ...
- luoguP3302 [SDOI2013]森林 主席树 启发式合并
题目链接 luoguP3302 [SDOI2013]森林 题解 本来这题树上主席树暴力启发式合并就完了 结果把lca写错了... 以后再也不这么写了 复杂度\(O(nlog^2n)\) "f ...
随机推荐
- mysql 索引的原理(超细)
一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句 ...
- SQL SERVER迁移--更换磁盘文件夹
默认情况下SQL SERVER的安装路径与数据库的默认存放路径是在C盘的--这就很尴尬. 平时又不注意,有天发现C盘的剩余空间比较吃紧了,于是着手想办法迁移文件夹. 一.环境准备 数据库版本--SQL ...
- 《Head First 设计模式》:与设计模式相处
正文 一.设计原则 1.封装变化 找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起. 2.针对接口编程,不针对实现编程 "针对接口编程"真正的意思是& ...
- CF1336 Linova and Kingdom
题面 给定 n 个节点的有根树,根是 1 号节点. 你可以选择 k 个节点将其设置为工业城市,其余设置为旅游城市. 对于一个工业城市,定义它的幸福值为工业城市到根的路径经过的旅游城市的数量. 你需要求 ...
- 使用painless将ElasticSearch字符串拆分为数组
一.实现场景: ES字符串类型字段imgs,有些历史数据是用逗号分隔的字符串,需要将历史数据拆分为数组形式. 示例: 1.构造测试数据: 创建索引并推送几条典型的历史数据,涵盖以下几种情况: 逗号分隔 ...
- linux修改进程名
一.linux中的进程名 linux中有很多查看/操作进程的命令. 这些命令的参数或显示的结果,有的是真实的进程名(top/pstree/pgrep/kill/killall),有的是进程 ...
- Amdocs收购OPENET:关于5G应用落地的思考
今年8月,全球通讯和媒体领导者之一Amdocs收购了Openet.在VoltDB,听到这个消息,我们感到非常高兴和自豪!在过去的7年里,我们一直是Openet解决方案的基础数据平台. 尽管许多供应商仍 ...
- PHP获取文件拓展名的方法
1.用strrchar()函数,查找字符串在另一字符串中最后出现的位置,并返回该位置到字符串最后的所有字符(返回结果包括点).即返回拓展名前 点 到结尾的字符,即为扩展名.注意与strchar() ...
- 第4章 Function语意学
第4章 Function语意学 目录 第4章 Function语意学 4.1 Member的各种调用方式 Nonstatic Member Function(非静态成员函数) virtual Memb ...
- 5分钟GET我使用Github 5 年总结的这些骚操作!
我使用 Github 已经有 5 年多了,今天毫无保留地把自己觉得比较有用的 Gihub 小技巧送给关注 JavaGuide 的各位小伙伴. 这篇文章肝了很久,就挺用心的,大家看内容就知道了. 如果觉 ...