这是一道写起来比较顺手的题目

没有各种奇怪的细节,基本就是Kruskal和倍增LCA的模板。。

题目大意:对于一个无向带权图,询问两点之间一条路,使得这条路上的最长边最小,输出最小最长边的的值

那么既然要使最长边最短,我们可以先构造一棵最小生成树

由于kruskal已经将边排了序了,所以对于这棵树,每条边都尽量最短了

然后我们再进行lca求出两点路径上的最长边,即为答案

 #include<stdio.h>
 #include<string.h>
 #include<algorithm>
 using namespace std;
 ;
 struct node{
     int u,v,cost,next;
 }e[maxn*],et[maxn*];
 int head[maxn],n,m,K,tot,logn,u,v;
 ],mx[maxn][];

 void insert(int u, int v, int c){
     e[++tot].u=u; e[tot].v=v; e[tot].cost=c; e[tot].next=head[u]; head[u]=tot;
 }

 bool cmp(node a, node b){
     return a.cost<b.cost;
 }

 int find(int x){
     return f[x]==x?x:f[x]=find(f[x]);
 }

 void MST(){
     ; i<=n; i++) f[i]=i;
     ; i<=m; i++){
         int fx=find(et[i].u), fy=find(et[i].v);
         if (fx!=fy){
             f[fy]=fx;
             insert(et[i].u,et[i].v,et[i].cost);
             insert(et[i].v,et[i].u,et[i].cost);
         }
     }
 }

 void dfs(int u, int f, int d, int cost){
     dep[u]=d; fa[u][]=f; mx[u][]=cost;
     ; i<=logn; i++) fa[u][i]=fa[fa[u][i-]][i-];
     ; i<=logn; i++) mx[u][i]=max(mx[u][i-],mx[fa[u][i-]][i-]);
     ; i=e[i].next)
         ,e[i].cost);
 }

 int lca_max(int u, int v){
     ;
     if (dep[u]>dep[v]) swap(u,v);
     while (dep[u]<dep[v]){
         ; i--)
             if (dep[u]<dep[fa[v][i]]){
                 ans=max(ans,mx[v][i]);
                 v=fa[v][i];
             }
         ans=max(ans,mx[v][]);
         v=fa[v][];
     }
     if (u==v) return ans;
     ; i--){
         if (fa[u][i]!=fa[v][i]){
             ans=max(ans,max(mx[v][i],mx[u][i]));
             u=fa[u][i]; v=fa[v][i];
         }
     }
     ans=max(ans,max(mx[u][],mx[v][]));
     return ans;
 }

 int main(){
     scanf("%d%d%d", &n, &m, &K);
     tot=-; memset(head,-,sizeof(head));
     <<logn)<n) logn++;
     ; i<=m; i++)
         scanf("%d%d%d", &et[i].u, &et[i].v, &et[i].cost);
     sort(et+,et++m,cmp);
     MST();
     dfs(,,,);
     while (K--){
         scanf("%d%d", &u, &v);
         printf("%d\n", lca_max(u,v));
     }
     ;
 }

bzoj3732: Network--kruskal最小生成树+LCA的更多相关文章

  1. 【BZOJ3732】 Network Kruskal+倍增lca

    Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_ ...

  2. BZOJ3732: Network(Kruskal重构树)

    题意 Link 给出一张$n$个点的无向图,每次询问两点之间边权最大值最小的路径 $n \leqslant 15000, m \leqslant 30000, k \leqslant 20000$ S ...

  3. Kruskal 最小生成树算法

    对于一个给定的连通的无向图 G = (V, E),希望找到一个无回路的子集 T,T 是 E 的子集,它连接了所有的顶点,且其权值之和为最小. 因为 T 无回路且连接所有的顶点,所以它必然是一棵树,称为 ...

  4. 贪心算法(2)-Kruskal最小生成树

    什么是最小生成树? 生成树是相对图来说的,一个图的生成树是一个树并把图的所有顶点连接在一起.一个图可以有许多不同的生成树.一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n ...

  5. Prim和Kruskal最小生成树

    标题: Prim和Kruskal最小生成树时 限: 2000 ms内存限制: 15000 K总时限: 3000 ms描述: 给出一个矩阵,要求以矩阵方式单步输出生成过程.要求先输出Prim生成过程,再 ...

  6. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  7. Kruskal重构树学习笔记+BZOJ3732 Network

    今天学了Kruskal重构树,似乎很有意思的样子~ 先看题面: BZOJ 题目大意:$n$ 个点 $m$ 条无向边的图,$k$ 个询问,每次询问从 $u$ 到 $v$ 的所有路径中,最长的边的最小值. ...

  8. 【BZOJ 3732】 Network Kruskal重构树+倍增LCA

    Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...

  9. POJ 1861:Network(最小生成树&amp;amp;&amp;amp;kruskal)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13266   Accepted: 5123   Specia ...

随机推荐

  1. 新一代编程:scala泛函编程技术-唠叨

    准备了半年后,终于决定在这里开始我的scala编程技术学习体验撰写之旅.初步打算在这里把我学习.体验.掌握scala编程的过程与有兴趣的朋友分享.我想,虽然我这不是正式论文或者教课书之类的,但写个开场 ...

  2. 02python算法-二分法简介

    老规矩: 什么是二分法: 其实是一个数学领域的词,但是在计算机领域也有广泛的使用. 为什么需要二分法? 当穷举算法性能让你崩溃时. 二分法怎么用呢? 让我们先玩一个游戏先,我心里想一个100以内的整数 ...

  3. HDU 5920 Ugly Problem

    说起这道题, 真是一把辛酸泪. 题意 将一个正整数 \(n(\le 10^{1000})\) 分解成不超过50个回文数的和. 做法 构造. 队友UHC提出的一种构造方法, 写起来比较方便一些, 而且比 ...

  4. storm如何保证at least once语义?

    背景 前期收到的问题: 1.在Topology中我们可以指定spout.bolt的并行度,在提交Topology时Storm如何将spout.bolt自动发布到每个服务器并且控制服务的CPU.磁盘等资 ...

  5. MVC中的_viewstart.cshtml(没有设置Layout却引用了布局)

    今天Home视图中新增了一个视图,因为不需要设置Layout就没与管他,但是运行起来一看,自动引用了布局,分析了半天 也没看出是哪的错误? 后来尝试着在area中增加了一个同样的视图就没有问题,比较这 ...

  6. PHP加密解密函数

    <?php/***功能:对字符串进行加密处理*参数一:需要加密的内容*参数二:密钥*/function passport_encrypt($str,$key){ //加密函数 srand((do ...

  7. 查看 usb info

    mount -t usbfs /proc/bus/usb /proc/bus/usb cat /proc/bus/usb/devices

  8. xfire实现webservice客户端之测试关注点

    日前的工作接触到很多系统间的Webservice调用,这里想谈谈基于spring+xfire实现的webservice的客户端踩过的一些坑,需要测试关注的点. xFire的配置项 在spring中实现 ...

  9. Backbone案例的初略理解

    版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://www.blogbus.com/monw3c-logs/217636180.html 先说一下Backbone的执行顺序: ...

  10. 【机器学习】神经网络实现异或(XOR)

    注:在吴恩达老师讲的[机器学习]课程中,最开始介绍神经网络的应用时就介绍了含有一个隐藏层的神经网络可以解决异或问题,而这是单层神经网络(也叫感知机)做不到了,当时就觉得非常神奇,之后就一直打算自己实现 ...