Evacuation Plan
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4617   Accepted: 1218   Special Judge

Description

The City has a number of municipal buildings and a number of fallout shelters that were build specially to hide municipal workers in case of a nuclear war. Each fallout shelter has a limited capacity in terms of a number of people it can accommodate, and there's almost no excess capacity in The City's fallout shelters. Ideally, all workers from a given municipal building shall run to the nearest fallout shelter. However, this will lead to overcrowding of some fallout shelters, while others will be half-empty at the same time.

To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings' management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.

The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker's municipal building to the fallout shelter assigned to this worker.

The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council's incompetence.

During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.

Input

The input consists of The City description and the evacuation plan description. The first line of the input file consists of two numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City (all fallout shelters are numbered from 1 to M).

The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.

The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.

The description of The City Council's evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.

The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.

Output

If The City Council's plan is optimal, then write to the output the single word OPTIMAL. Otherwise, write the word SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the input file. Your plan need not be optimal itself, but must be valid and better than The City Council's one.

Sample Input

3 4
-3 3 5
-2 -2 6
2 2 5
-1 1 3
1 1 4
-2 -2 7
0 -1 3
3 1 1 0
0 0 6 0
0 3 0 2

Sample Output

SUBOPTIMAL
3 0 1 1
0 0 6 0
0 4 0 1

Source

费用流消圈算法。

根据已有的残量矩阵建图,由于残量可以直接从图上读到,所以不需要在边里存容量。

SPFA判断是否有负环,有则处理。

有点没看懂,姑且抄份代码慢慢研究

 #include<iostream>
 #include<stdio.h>
 #include<stdlib.h>
 #include<string.h>
 #include<algorithm>
 #include<queue>
 #define LL long long
 using namespace std;
 const int INF=1e9;
 *;
 inline int read(){
     ,flag=;char ch=getchar();
     '))ch=getchar();
     ;ch=getchar();}
     +ch-';ch=getchar();}
     return sum*flag;
 }
 struct edge{
     int u,v,nxt,w;
 }e[mxn*mxn*];
 ;
 void add_edge(int u,int v,int w){
 //    printf("add:%d to %d :%d\n",u,v,w);
     e[++mct].u=u;e[mct].v=v;e[mct].nxt=hd[u];e[mct].w=w;hd[u]=mct;return;
 }
 int n,m,S,T;
 int mp[mxn][mxn];
 int dis[mxn];
 int pre[mxn];
 int cnt[mxn];
 bool inq[mxn];
 bool SPFA(){
     memset(dis,0x3f,sizeof dis);
     memset(inq,,sizeof inq);
     memset(cnt,,sizeof cnt);
     queue<int>q;
     q.push(T);
     dis[T]=;inq[T]=;pre[T]=;cnt[T]++;
     ;
     int v;
     while(!q.empty() && flag){
         ;
         for(int i=hd[u];i;i=e[i].nxt){
             v=e[i].v;
             if(dis[v]>dis[u]+e[i].w){
                 dis[v]=dis[u]+e[i].w;
                 pre[v]=u;
                 if(!inq[v]){
                     q.push(v);
                     inq[v]=; cnt[v]++;
                     ){
                         flag=;
                         break;
                     }
                 }
             }
         }
     }
     if(flag)printf("OPTIMAL\n");
     else{
         printf("SUBOPTIMAL\n");
         memset(inq,,sizeof inq);
         int s=v;
         ){
             ,s=pre[s];
             else break;
         }
         memset(inq,,sizeof inq);
         while(!inq[s]){
             inq[s]=;
             int p=pre[s];
             if(p>n && s!=T) mp[s][p]--;
             else if(s>n && p!=T) mp[p][s]++;
             s=pre[s];
         }
         int ed=n+m;
         ;i<=n;i++){//输出可行解
             ;j<=ed;j++){
                 )printf(" ");
                 printf("%d",mp[i][j]);
             }
             printf("\n");
         }
     }
     ;
 }
 int x[mxn],y[mxn],w[mxn],in[mxn];
 void Build(){
     memset(hd,,sizeof hd);
     memset(,sizeof in);
     mct=;
     int i,j;
     ;i<=n;i++)
         ;j<=n+m;j++){
             ;//代价
 //            printf("%d ",v);
             add_edge(i,j,v);
             if(mp[i][j])add_edge(j,i,-v);
             in[j]+=mp[i][j];
         }
 //    printf("\n");
     ;i<=n+m;i++){
         );
         );
     }
     return;
 }
 int main(){
     int i,j;
     while(scanf("%d%d",&n,&m)!=EOF){
         ;
         ;i<=ed;i++){
             x[i]=read();y[i]=read();w[i]=read();
         }
         ;i<=n;i++)
             ;j<=ed;j++)
                 mp[i][j]=read();
         Build();
         SPFA();
     }
     ;
 }

POJ2175 Evacuation Plan的更多相关文章

  1. POJ-2175 Evacuation Plan 最小费用流、负环判定

    题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个 ...

  2. HDU 3757 Evacuation Plan DP

    跟 UVa 1474 - Evacuation Plan 一个题,但是在杭电上能交过,在UVa上交不过……不知道哪里有问题…… 将施工队位置和避难所位置排序. dp[i][j] 代表前 i 个避难所收 ...

  3. Codeforces Gym 100002 E &quot;Evacuation Plan&quot; 费用流

    "Evacuation Plan" Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...

  4. POJ 2175 Evacuation Plan (费用流,负环,消圈法,SPFA)

    http://poj.org/problem?id=2175 Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  5. POJ 2175 Evacuation Plan 费用流 负圈定理

    题目给了一个满足最大流的残量网络,判断是否费用最小. 如果残量网络中存在费用负圈,那么不是最优,在这个圈上增广,增广1的流量就行了. 1.SPFA中某个点入队超过n次,说明存在负环,但是这个点不一定在 ...

  6. POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]

    ---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...

  7. UVA 1474 Evacuation Plan

    题意:有一条公路,上面有n个施工队,要躲进m个避难所中,每个避难所中至少有一个施工队,躲进避难所的花费为施工队与避难所的坐标差的绝对值,求最小花费及策略. 解法:将施工队和避难所按坐标排序,可以看出有 ...

  8. poj 2175 Evacuation Plan 最小费用流判定,消圈算法

    题目链接 题意:一个城市有n座行政楼和m座避难所,现发生核战,要求将避难所中的人员全部安置到避难所中,每个人转移的费用为两座楼之间的曼哈顿距离+1,题目给了一种方案,问是否为最优方案,即是否全部的人员 ...

  9. Evacuation Plan-POJ2175最小费用消圈算法

    Time Limit: 1000MS Memory Limit: 65536K Special Judge Description The City has a number of municipal ...

随机推荐

  1. Java继承

    Java只支持单继承,不支持多继承. 一个类只能有一个父类,不可以有多个父类. class SubDemo extends Demo{} //ok class SubDemo extends Demo ...

  2. Java多种方式动态生成doc文档

    转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/5280272.html 本来是要在Android端生成doc的(这需求...),最后方法没有好的方法能够在An ...

  3. js表达式与语句的区别

    http://www.2ality.com/2012/09/expressions-vs-statements.html http://www.jb51.net/article/31298.htm 表 ...

  4. Redis学习和环境搭建

    基本的redis教程,搭建,可以参照下面任一教程: 地址一:http://www.yiibai.com/redis/redis_quick_guide.html 地址二:http://www.runo ...

  5. 【原】iOS学习之文件管理器(NSFileManager)和文件对接器(NSFileHandle)

    1.文件管理器(NSFileManager) 1> 主要作用及功能方法 主要作用:此类主要是对文件进行的操作(创建/删除/改名等)以及文件信息的获取. 功能方法: 2> 创建文件夹 创建所 ...

  6. Python之路 day2 文件基础操作

    #!/usr/bin/env python # -*- coding:utf-8 -*- #Author:ersa ''' #f,文件句柄;模式 a : append 追加文件内容 f = open( ...

  7. storm 配置,呵呵。

    配置项 配置说明 storm.zookeeper.servers ZooKeeper服务器列表 storm.zookeeper.port ZooKeeper连接端口 storm.local.dir s ...

  8. android开发学习之Level List篇

    Level List google 说明:A Drawable that manages a number of alternate Drawables, each assigned a maximu ...

  9. 浅谈T-SQL中的子查询

    引言 这篇文章我们来简单的谈一下子查询的相关知识.子查询可以分为独立子查询和相关子查询.独立子查询不依赖于它所属的外部查询,而相关子查询则依赖于它所属的外部查询.子查询返回的值可以是标量(单值).多值 ...

  10. LeetCode解题报告:Reorder List

    Reorder List Given a singly linked list L: L0→L1→…→Ln-1→Ln,reorder it to: L0→Ln→L1→Ln-1→L2→Ln-2→… Yo ...