【python】递归听了N次也没印象,读完这篇你就懂了
听到递归总觉得挺高大上的,为什么呢?因为对其陌生,那么今天就来一文记住递归到底是个啥。
不过先别急,一起来看一个问题:求10的阶乘(10!)。
求x的阶乘,其实就是从1开始依次乘到x。那么10的阶乘就是 1*2*3*4*5*6*7*8*9*10
一、非递归方式求阶乘
假如,我们在没接触过递归的情况下,如何去解决这样的问题呢?
最简单粗暴的方式 直接print(1*2*3*4*5*6*7*8*9*10)
出结果就行了,结果是3628800
。
但是这种方式显然不是我们想要的,那么可以试试用for循环的方式来解决。
def factorial(n):
"""
n 就是要求的阶乘的数字
"""
result = n
for i in range(1, n):
result *= i
return result
if __name__ == '__main__':
print(factorial(10))
二、递归方式求阶乘
1. 什么是递归?
相信大家一定都听过这么一个故事:
从前有座山,山里有做庙,庙里有个老和尚在讲故事,讲的什么呢?
从前有座山,山里有做庙,庙里有个老和尚在讲故事,讲的什么呢?
从前有座山,山里有做庙,庙里有个老和尚在讲故事,讲的什么呢?
...
其实这种就是递归,说白了,就是自己去引用自己。
那么,递归用在函数中,就可以是这样的:
def factorial():
factorial()
if __name__ == '__main__':
factorial()
在调用函数factorial
的时候 在函数中又继续调用factorial
,跟上面的故事一样,就可以无穷无尽的递归下去,
直到讲故事的老和尚累晕,以及电脑的内存溢出宕机。
但是,重要的一点,递归只是解决问题的一种方式而已,比如上面的求阶乘,我用for循环一样解决。
2. 递归解决阶乘
如果要用递归解决上面的阶乘问题,可以再进一步了解下递归的整体思想。
递归的整体思想就是,将一个大问题分解成一个个的小问题,直到问题没有办法再继续分解,于是,再去解决问题。
那么,递归式函数就要满足2个条件:
- 基线条件:问题可以被分解为的最小问题,当满足基线条件时候,递归不再进行
- 递归条件:继续分解问题
可以用这个思想来尝试用递归的方式解决阶乘的问题。
10! = 10 * 9! # 10的阶乘其实可以看做是10 * 9的阶乘
9! = 9 * 8! # 9的阶乘可以看做是9 * 8的阶乘
8! = 8 * 7!
...
2! = 2 * 1!
1! = 1
可以看到,最后分解到1的时候就不可再继续分解了,那么1就是基线条件了。
def factorial(n):
# 基线条件,当满足时,则不再递归
if n == 1:
return 1
# 递归条件,当n不等于1时,继续递归
return n * factorial(n - 1)
if __name__ == '__main__':
print(factorial(10))
三、总结
- 递归:只是解决问题的一种方式,不一定非要用
- 递归式函数:就是函数自己调用自己
- 递归的2个条件:基线条件(满足则不再递归)、递归条件(满足则基线递归)
- 递归跟循环类似:基本可以互相替代
- 循环编写起来比较容易,阅读起来比较难。递归编写起来比较难,但是阅读容易
【python】递归听了N次也没印象,读完这篇你就懂了的更多相关文章
- 【python】装饰器听了N次也没印象,读完这篇你就懂了
装饰器其实一直是我的一个"老大难".这个知识点就放在那,但是拖延症... 其实在平常写写脚本的过程中,这个知识点你可能用到不多 但在面试的时候,这可是一个高频问题. 一.什么是装饰 ...
- python(递归实例)
摘要:在学习python递归知识点时,总是一知半解,似懂非懂的..在反复看视频翻资料同时,也收集案例来分析求证..通过分析下面几个案例希望能有所帮助!!! 1.用递归的方法实现阶乘... def nu ...
- 用Python递归解决阿拉伯数字转为中文财务数字格式的问题(2)--打开思路的一种方法
几天前自己写了个将阿拉伯数字转为中文财务数字的程序.用的递归,不幸的是它是树形递归. 虽然实际过程中不太可能出现金额数字大到让Python递归栈溢出,但是始终是一块心病,这玩意终究在理论上是受限制的. ...
- 在做关于NIO TCP编程小案例时遇到无法监听write的问题,没想到只是我的if语句的位置放错了位置,哎,看了半天没看出来
在做关于NIO TCP编程小案例时遇到无法监听write的问题,没想到只是我的if语句的位置放错了位置,哎,看了半天没看出来 贴下课堂笔记: 在Java中使用NIO进行网络TCP套接字编程主要以下几个 ...
- Python递归_打印节点信息
Python递归_打印节点信息 递归特性:1.必须由一个明确的结束条件2.每次进入更深一层递归时,问题规模相比上一次递归都应该有所减少3.递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用时 ...
- Python递归实现汉诺塔
Python递归实现汉诺塔: def f3(n,x,y,z): if(n==1): print(x,'--->',z) else: f3(n-1,x,z,y) print(x,'--->' ...
- python 递归深度优先搜索与广度优先搜索算法模拟实现
一.递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1.写出临界条件2.找出这一次和上一次关系3.假设当前 ...
- python递归列出目录及其子目录下所有文件
python递归列出目录及其子目录下所有文件 一.前言 函数的递归,简单来说,就是函数内部调用自己 先举个小例子,求阶乘 def factorial(n): if n == 0: return 1 e ...
- python 递归,深度优先搜索与广度优先搜索算法模拟实现
一.递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1.写出临界条件 2.找出这一次和上一次关系 3.假设 ...
- python递归次数和堆栈溢出问题
在做递归的时候,测试了一下python的递归能力. 如果不设置递归次数的话,大概只能在992次左右,就会出现错误:RuntimeError: maximum recursion depth excee ...
随机推荐
- SharePoint 2013 操作文档库ECB菜单
在SharePoint的使用中,我们经常需要定制SharePoint的一系列菜单,这里就包括ECB菜单,下面,我们简单了解一下ECB菜单如何定制,以及原理. 1.正常情况文档库的ECB菜单如下图: 2 ...
- Cookie与Session的区别
cookie机制 Cookies是服务器在本地机器上存储的小段文本并随每一个请求发送至同一个服务器.IETF RFC 2965 HTTP State Management Mechanism 是通用c ...
- Python操作文件、文件夹、字符串
Python 字符串操作 去空格及特殊符号 s.strip().lstrip().rstrip(',') 复制字符串 #strcpy(sStr1,sStr2) sStr1 = 'strcpy' sSt ...
- 149. Max Points on a Line *HARD* 求点集中在一条直线上的最多点数
Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...
- MVC小系列(六)【无刷新的验证码】
做个无刷新的验证码功能: 第一步:首先,在公用项目中建立一个生成图片验证码的类型ValidateCode /// <summary> /// 生成验证码对象 /// </summar ...
- Arduino单片机使用和开发问题记录(转)
源:Arduino单片机使用和开发问题记录 1.将程序上传到板子时Arduino IDE提示“avrdude: stk500_getsync(): not in sync: resp=0x00” 网上 ...
- readystate, 异步
EventUtil.addHandler(window, "load", function(){ //create a new <script/> element. v ...
- vue 中 assets 和 static 的区别
Vue中的静态资源管理(src下的assets和static文件夹的区别)
- css3d旋转
一.包裹层添加 -webkit-perspective: 800px; -moz-perspective: 800px; 使子元素获得3D效果支持 二.自持子元素需支持3D效果 -webkit-t ...
- Cracking The Coding Interview 2.5
这题的思想来自于http://hawstein.com/posts/2.5.html,重新实现了一下 用hash来记录循环的起点 //Given a circular linked list, imp ...