二分一个最大的位置$x$,计算$t=\sum_{i=1}^k\lfloor\frac{x}{a_i}\rfloor$。

如果$t\leq n$,那么说明就算全部检票员都走到了这里,也不够$n$个指令,所以可以先将所有检票员尽量向$x$位置走,并将用掉的指令数扣除。

然后将$x$适当往前调整,使得每个检票员还差至少一步。

因为$a_i$互不相同,并且$a_i\leq 100000$,所以剩余指令数并不多,用堆直接模拟即可。

时间复杂度$O(k\log^2k)$。

#include<cstdio>
#include<algorithm>
#include<queue>
#define N 100010
using namespace std;
typedef long long ll;
typedef pair<ll,int> P;
int n,i,a[N];ll m,L,R,mid,fin,now,ans[N];priority_queue<P,vector<P>,greater<P> >Q;
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
bool check(ll x){
ll t=m;
for(int i=1;i<=n;i++){
t-=x/a[i];
if(t<0)return 0;
}
return 1;
}
int main(){
scanf("%lld",&m);read(n);
for(i=1;i<=n;i++){
read(a[i]);
if(a[i]>R)R=a[i];
}
L=R+1,R*=m;
while(L<=R)if(check(mid=(L+R)>>1))L=(fin=mid)+1;else R=mid-1;
for(R=fin,i=1;i<=n;i++)R=min(R,max((fin/a[i]-1)*a[i],0LL));
for(i=1;i<=n;i++)now+=R/a[i],Q.push(P(R/a[i]*a[i],i));
while(now<m){
P t=Q.top();Q.pop();
ans[t.second]=++now;
t.first+=a[t.second];
Q.push(t);
}
for(i=1;i<n;i++)printf("%lld ",ans[i]);printf("%lld",ans[n]);
return 0;
}

  

BZOJ3735 : [Pa2013]Konduktorzy的更多相关文章

  1. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  2. 【BZOJ3733】[Pa2013]Iloczyn (搜索)

    [BZOJ3733][Pa2013]Iloczyn (搜索) 题面 BZOJ 题解 把约数筛出来之后,直接爆搜,再随便剪枝就过了. 最近一句话题解倾向比较严重 #include<iostream ...

  3. 【BZOJ3837】[Pa2013]Filary 随机化神题

    [BZOJ3837][Pa2013]Filary Description 给定n个正整数,从中挑出k个数,满足:存在某一个m(m>=2),使得这k个数模m的余数相等. 求出k的最大值,并求出此时 ...

  4. 【BZOJ3837】[PA2013]Filary

    [BZOJ3837][PA2013]Filary 题面 darkbzoj 题解 考虑到模数为\(2\)时答案至少为\(\frac n2\),这是我们答案的下界. 那么我们对于任意的一个数,它们答案集合 ...

  5. 【BZOJ】3737: [Pa2013]Euler

    题意: 求满足\(phi(a)=n\)的\(a\)的个数.(\(n \le 10^{10}\)) 分析 这种题一开始就感觉是搜索= = 题解 首先容易得到 \[\phi(n) = \prod_{i} ...

  6. BZOJ 3736: [Pa2013]Karty

    Description 一个0/1矩阵,求能覆盖所有 \(1\) ,同时不覆盖所有 \(0\) 的矩阵,使这个面积最大. Sol DP/悬线法. 首先,所求的矩阵一定可以覆盖所有贴边的悬线. 用悬线法 ...

  7. BZOJ3733 : [Pa2013]Iloczyn

    首先将$n$的约数从小到大排序,设$dfs(x,y,z)$表示当前可以选第$x$个到第$m$个约数,还要选$y$个,之前选的乘积为$z$是否可能. 爆搜的时候,如果从$x$开始最小的$y$个相乘也超过 ...

  8. BZOJ3839 : [Pa2013]Działka

    对于每个询问,首先可以通过扫描线+线段树求出四个方向的第一个点,询问范围等价于框住这些点的最小矩形. 对于一个点$i$,预处理出: $A[i][j]$:$i$往左下角按凸壳走到$j$时,凸壳上相邻两点 ...

  9. BZOJ3838 : [Pa2013]Raper

    将选取的$A$看成左括号,$B$看成右括号,那么答案是一个合法的括号序列. 那么只要重复取出$k$对价值最小的左右括号,保证每时每刻都是一个合法的括号序列即可. 将$($看成$1$,$)$看成$-1$ ...

随机推荐

  1. “三巨头”有变化,BAT还能走多久?

    在腾讯市值超越阿里巴巴后,市场分析多数认为,当年的BAT“三巨头”时代已经彻底结束,进入了“双寡头”时代了 从对外投资来看,BAT不同的投资逻辑可以推测其战略方向 撰文/梁云风 时评员,关注财经与互联 ...

  2. Tomcat8.0.21登录时忘记用户名和密码

    大概是这学期开学没多久吧,4月份的时候,为了学习javaEE,装了Tomcat.过了这么久早就忘记用户名和密码了,所以无法进入Tomcat的管理界面.百度(其实我也很想用google)了一堆,几乎都是 ...

  3. [2-sat]HDOJ3062 Party

    中文题 题意略 学2-sat啦啦啦 2-sat就是    矛盾的 ($x.x’$不能同时取) m对人 相互也有限制条件 取出其中n个人 也有可能是把一件东西分成 取/不取 相矛盾的两种情况 (那就要拆 ...

  4. Delphi XE6调用javascript

    原文地址:Example of using JavaScript for Google maps in the Delphi XE6   XE6的TWebBrowser新增了EvaluateJavaS ...

  5. SDP(8):文本式数据库-MongoDB-Scala基本操作

    MongoDB是一种文本式数据库.与传统的关系式数据库最大不同是MongoDB没有标准的格式要求,即没有schema,合适高效处理当今由互联网+商业产生的多元多态数据.MongoDB也是一种分布式数据 ...

  6. 如何处理MySQL每月5亿的数据

    第一阶段:1,一定要正确设计索引2,一定要避免SQL语句全表扫描,所以SQL一定要走索引(如:一切的 > < != 等等之类的写法都会导致全表扫描)3,一定要避免 limit 100000 ...

  7. 黄聪:PHP如何实现延迟一定时间后自动刷新当前页面、自动跳转header(&quot;refresh:1;url={$url}&quot;);

    //1秒后自动跳转 header("refresh:1;url={$url}"); exit; //1秒后自动刷新当前页面header("refresh:1;" ...

  8. API / DOM

    浏览器特性 当控制台报错时,IE9会停止执行JS.当打开控制台时会执行后续JS ------------------------------------------------------------ ...

  9. HDU 1263:水果(map)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1263 #include <stdio.h> #include <string.h&g ...

  10. ASP.NET Core使用EF Core操作MySql数据库

    ASP.NET Core操作MySql数据库, 这样整套环境都可以布署在Linux上 使用微软的 Microsoft.EntityFrameworkCore(2.1.4) 和MySql出的 MySql ...