在前两篇文章中,我介绍了《训练自己的haar-like特征分类器并识别物体》的前三个步骤:

1.准备训练样本图片,包括正例及反例样本

2.生成样本描述文件

3.训练样本

4.目标识别

==============

本文将着重说明最后一个阶段——目标识别,也即利用前面训练出来的分类器文件(.xml文件)对图片中的物体进行识别,并在图中框出在该物体。由于逻辑比较简单,这里直接上代码:

int _tmain(int argc, _TCHAR* argv[])
{
char *cascade_name = CASCADE_HEAD_MY; //上文最终生成的xml文件命名为"CASCADE_HEAD_MY.xml"
cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 ); //加载xml文件 if( !cascade )
{
fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
system("pause");
return -1;
}
storage = cvCreateMemStorage(0);
cvNamedWindow( "face", 1 ); const char* filename = "(12).bmp";
IplImage* image = cvLoadImage( filename, 1 ); if( image )
{
detect_and_draw( image ); //函数见下方
cvWaitKey(0);
cvReleaseImage( &image );
}
cvDestroyWindow("result");
return 0;
}
 void detect_and_draw(IplImage* img )
{
double scale=1.2;
static CvScalar colors[] = {
{{,,}},{{,,}},{{,,}},{{,,}},
{{,,}},{{,,}},{{,,}},{{,,}}
};//Just some pretty colors to draw with //Image Preparation
//
IplImage* gray = cvCreateImage(cvSize(img->width,img->height),,);
IplImage* small_img=cvCreateImage(cvSize(cvRound(img->width/scale),cvRound(img->height/scale)),,);
cvCvtColor(img,gray, CV_BGR2GRAY);
cvResize(gray, small_img, CV_INTER_LINEAR); cvEqualizeHist(small_img,small_img); //直方图均衡 //Detect objects if any
//
cvClearMemStorage(storage);
double t = (double)cvGetTickCount();
CvSeq* objects = cvHaarDetectObjects(small_img,
cascade,
storage,
1.1,
,
/*CV_HAAR_DO_CANNY_PRUNING*/,
cvSize(,)); t = (double)cvGetTickCount() - t;
printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*.) ); //Loop through found objects and draw boxes around them
for(int i=;i<(objects? objects->total:);++i)
{
CvRect* r=(CvRect*)cvGetSeqElem(objects,i);
cvRectangle(img, cvPoint(r->x*scale,r->y*scale), cvPoint((r->x+r->width)*scale,(r->y+r->height)*scale), colors[i%]);
}
for( int i = ; i < (objects? objects->total : ); i++ )
{
CvRect* r = (CvRect*)cvGetSeqElem( objects, i );
CvPoint center;
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
cvCircle( img, center, radius, colors[i%], , , );
} cvShowImage( "result", img );
cvReleaseImage(&gray);
cvReleaseImage(&small_img);
}

detect_and_draw

===================================

其实上面的代码可以运用于大部分模式识别问题,无论是自己生成的xml文件还是opencv自带的xml文件。在opencv的工程目录opencv\data文件夹下有大量的xml文件,这些都是opencv开源项目中的程序员们自己训练出来的。然而,效果一般不会合你预期,所以才有了本系列文章。天下没有免费的午餐,想要获得更高的查准率与查全率,不付出点努力是不行的!

 

【原】训练自己的haar-like特征分类器并识别物体(3)的更多相关文章

  1. 【原】训练自己haar-like特征分类器并识别物体(2)

    在上一篇文章中,我介绍了<训练自己的haar-like特征分类器并识别物体>的前两个步骤: 1.准备训练样本图片,包括正例及反例样本 2.生成样本描述文件 3.训练样本 4.目标识别 == ...

  2. 【原】训练自己haar-like特征分类器并识别物体(1)

    本系列文章旨在学习如何在opencv中基于haar-like特征训练自己的分类器,并且用该分类器用于模式识别.该过程大致可以分为一下几个大步骤: 1.准备训练样本图片,包括正例及反例样本 2.生成样本 ...

  3. 使用OpenCV训练Haar like+Adaboost分类器的常见问题

    <FAQ:OpenCV Haartraining>——使用OpenCV训练Haar like+Adaboost分类器的常见问题 最近使用OpenCV训练Haar like+Adaboost ...

  4. AdaBoost中利用Haar特征进行人脸识别算法分析与总结1——Haar特征与积分图

    原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上 ...

  5. 【macOS】 在OpenCV下训练Haar特征分类器

    本教程基于以下环境 macOS 10.12.6,OpenCV 3.3.0,python 3.6.由于网上基于masOS系统的教程太少,想出一篇相关教程造福大家-本文旨在学习如何在opencv中基于ha ...

  6. opencv - haar人脸特征的训练

    step 1: 把正样品,负样品,opencv_createsamples,opencv_haartraining放到一个文件夹下面,利于后面的运行.step 2: 生成正负样品的描述文件 正样品描述 ...

  7. opencv:级联分类器训练(cascade classifier training)(两个分类器的区别)

    # 介绍 级联分类器包括两个工作阶段:训练(traning),检测(detection).检测阶段在文档<objdetect module of general OpenCV documenta ...

  8. Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally如何使用尽可能少的标注数据来训练一个效果有潜力的分类器

    作者:AI研习社链接:https://www.zhihu.com/question/57523080/answer/236301363来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...

  9. sklearn 可视化模型的训练测试收敛情况和特征重要性

    show the code: # Plot training deviance def plot_training_deviance(clf, n_estimators, X_test, y_test ...

随机推荐

  1. 探索 OpenStack 之(7):Neutron 深入探索之 Open vSwitch (OVS) + GRE 之 Neutron节点篇

    0. 测试环境 硬件环境:还是使用四节点OpenStack部署环境,参见 http://www.cnblogs.com/sammyliu/p/4190843.html OpenStack配置: ten ...

  2. jQuery中的遍历

    在原生javascript中我们用的最多的遍历就是for,但是在jQuery里面有个方法比for还有强大,它就是我们经常看到的each()方法,当然了如果考虑性能方面的话还是建议用for来进行元素的遍 ...

  3. ubuntuy用户切换和密码修改

    修改当前用户的密码 $passwd 修改用户密码 $sudo passwd 用户名 切换到其他帐号(需要该用户的密码) $su 用户名 切换到root帐号 $sudo -s

  4. iOS 9 适配

    一.iOS9 bitcode首先最大的问题就是坑货xcode7,xcode7默认是打开bitcode的,bitcode是苹果为了解决他自己以后的应用可以随意更换硬件的处理做的准备也就是arm指令集和x ...

  5. php防止重复提交问题

    php防止重复提交问题 用户提交表单时可能因为网速的原因,或者网页被恶意刷新,致使同一条记录重复插入到数据库中,这是一个比较棘手的问题.我们可以从客户端和服务器端一起着手,设法避免同一表单的重复提交. ...

  6. JAVA模板方法模式

    模板方法模式的结构 模板方法模式是所有模式中最为常见的几个模式之一,是基于继承的代码复用的基本技术. 模板方法模式需要开发抽象类和具体子类的设计师之间的协作.一个设计师负责给出一个算法的轮廓和骨架,另 ...

  7. App Store Review Guideline(带翻译)

    1. Terms and conditions(法律与条款) 1.1  As a developer of applications for the App Store you are bound b ...

  8. 解决maven 下载 hadoop-client 客户端 报错的问题

    第一.pom.xml配置: <dependency> <groupId>org.apache.hadoop</groupId> <artifactId> ...

  9. 初识Java网络编程

    事实上网络编程简单的理解就是两台计算机相互通讯数据而已,对于程序员而言,去掌握一种编程接口并使用一种编程模型相对就会显得简单的多了,Java SDK提供一些相对简单的Api来完成这些工作.Socket ...

  10. bzoj 4026 dC Loves Number Theory

    把我写吐了 太弱了 首先按照欧拉函数性质 我只需要统计区间不同质数个数就好了 一眼主席树 其次我被卡了分解质因数这里 可以通过质数筛时就建边解决 不够灵性啊,不知道如何改 #include<bi ...