题目链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/

题目描述:

给定两个大小为 m 和 n 的有序数组 nums1nums2

请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1nums2 不会同时为空。

示例:

示例 1:

nums1 = [1, 3]
nums2 = [2] 则中位数是 2.0

示例 2:

nums1 = [1, 2]
nums2 = [3, 4] 则中位数是 (2 + 3)/2 = 2.5

思路:

这道题如果时间复杂度没有限定在\(O(log(m+n))\),我们可以用\(O(m+n)\)的算法解决,用两个指针分别指向两个数组,比较指针下的元素大小,一共移动次数为(m+n + 1)/2​,便是中位数.

首先,我们理解什么中位数:指的是该数左右个数相等.

比如: odd : [1,| 2 |,3],2就是这个数组的中位数,左右两边都只要1位;

even: [1,| 2, 3 |,4],2,3就是这个数组的中位数,左右两边1位;

那么,现在我们有两个数组:

num1: [a1,a2,a3,...an]

nums2: [b1,b2,b3,...bn]

[nums1[:left1],nums2[:left2] | nums1[left1:], nums2[left2:]]

只要保证左右两边个数相同,中位数就在|这个边界旁边产生.

如何找边界值,我们可以用二分法,我们先确定num1m1左半边,那么num2 m2 = (m+n+1)/2 - m1的左半边,找到合适的m1,就用二分法找,关于我的二分法看另一篇文章

[ [a1],[b1,b2,b3] | [a2,..an],[b4,...bn] ]

我们只需要比较 b3a2的关系的大小,就可以知道这种分法是不是准确的!

例如:我们令:

nums1 = [-1,1,3,5,7,9]

nums2 =[2,4,6,8,10,12,14,16]

m1 = 4,m2 = 3

median = (num1[m1] + num2[m2])/2

时间复杂度:\(O(log(min(m,n)))\)

对于代码中边界情况,大家需要自己琢磨.

感觉对自己有用,就点个赞吧,并关注我的知乎专栏,嘻嘻!

代码:

python版

class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
n1 = len(nums1)
n2 = len(nums2)
if n1 > n2:
return self.findMedianSortedArrays(nums2,nums1)
k = (n1 + n2 + 1)//2
left = 0
right = n1
while left < right :
m1 = left +(right - left)//2
m2 = k - m1
if nums1[m1] < nums2[m2-1]:
left = m1 + 1
else:
right = m1
m1 = left
m2 = k - m1
c1 = max(nums1[m1-1] if m1 > 0 else float("-inf"), nums2[m2-1] if m2 > 0 else float("-inf") )
if (n1 + n2) % 2 == 1:
return c1
c2 = min(nums1[m1] if m1 < n1 else float("inf"), nums2[m2] if m2 <n2 else float("inf"))
return (c1 + c2) / 2

c++版

class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
const int n1 = nums1.size();
const int n2 = nums2.size();
if(n1>n2) return findMedianSortedArrays(nums2, nums1);
const int k = (n1 + n2 + 1)/2;
int left = 0;
int right = n1;
while(left < right){
const int m1 = left + (right - left)/2;
const int m2 = k - m1;
if(nums1[m1]<nums2[m2-1])
left = m1 + 1;
else
right = m1;
}
const int m1 = left;
const int m2 = k - left;
const int c1 = max(m1 <= 0 ? INT_MIN:nums1[m1-1],
m2 <= 0 ? INT_MIN:nums2[m2-1]);
if((n1 + n2)%2 == 1)
return c1;
const int c2 = min(m1 >= n1 ? INT_MAX: nums1[m1],
m2 >= n2 ? INT_MAX : nums2[m2]);
return (c1 + c2) * 0.5;
}
};

java版

class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int n1 = nums1.length;
int n2 = nums2.length;
if (n1>n2)
return findMedianSortedArrays(nums2, nums1);
int k = (n1 + n2 + 1)/2;
int left = 0;
int right = n1;
while(left < right){
int m1 = left +(right - left)/2;
int m2 = k - m1;
if (nums1[m1] < nums2[m2-1])
left = m1 + 1;
else
right = m1;
}
int m1 = left;
int m2 = k - left;
int c1 = Math.max(m1 <= 0 ? Integer.MIN_VALUE : nums1[m1-1],
m2 <= 0 ? Integer.MIN_VALUE : nums2[m2-1]);
if ((n1 + n2) % 2 == 1)
return c1;
int c2 = Math.min( m1 >= n1 ? Integer.MAX_VALUE :nums1[m1],
m2 >= n2 ? Integer.MAX_VALUE : nums2[m2]);
return (c1 + c2) * 0.5; }
}

[LeetCode] 4. 寻找两个有序数组的中位数的更多相关文章

  1. Java实现 LeetCode 4 寻找两个有序数组的中位数

    寻找两个有序数组的中位数 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 n ...

  2. 【LeetCode】寻找两个有序数组的中位数【性质分析+二分】

    给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 ...

  3. 【LeetCode】寻找两个有序数组的中位数

    给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2  ...

  4. leetcode 4寻找两个有序数组的中位数

    最优解O(log(min(m,n))) /** 之前用合并有序数组的思想做了O((m+n+1)/2),现在试一试O(log(min(m,n))) 基本思路为:通过二分查找较小的数组得到对应的中位数(假 ...

  5. LeetCode Golang 4. 寻找两个有序数组的中位数

    4. 寻找两个有序数组的中位数 很明显我偷了懒, 没有给出正确的算法,因为官方的解法需要时间仔细看一下... func findMedianSortedArrays(nums1 []int, nums ...

  6. Leetcode(4)寻找两个有序数组的中位数

    Leetcode(4)寻找两个有序数组的中位数 [题目表述]: 给定两个大小为 m 和 n 的有序数组 nums1 和* nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O( ...

  7. 0004. 寻找两个有序数组的中位数(Java)

    4. 寻找两个有序数组的中位数 https://leetcode-cn.com/problems/median-of-two-sorted-arrays/ 最简单的就是用最简单的,把两个数组分别抽出然 ...

  8. leetcode题目4.寻找两个有序数组的中位数(困难)

    题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和  ...

  9. leetcode -- 寻找两个有序数组的中位数

    题目: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nu ...

随机推荐

  1. express请求及对应的获取说明

    express 封装了多种 http 请求方式,我们主要只使用 get 和 post 两种,即 app.get() 和 app.post() . app.get() 和 app.post() 的第一个 ...

  2. .NET Core Preview

    .NET Core Preview 这是很容易上手使用.NET Core在您选择的平台上. 你只需要一个命令行,一个文本编辑器和10分钟的时间. 原文链接:https://www.microsoft. ...

  3. js获取文本框输入的值

    <script type="text/javascript"> function getPosition(obj) { ; if (obj.selectionStart ...

  4. Android 开发Project中各个目录和文件的介绍

    如上图标号: 存放java文件的文件夹“src”: 由aapt工具根据应用中的资源文件自动生成的R.java文件,以及buildConfiger.java文件,这两个文件最好不要去修改: 存放各种资源 ...

  5. git push error: RPC failed; result=56, HTTP code = 0 ,the remote end hung up unexpectedly

    git push的时候发生标题上面的错误,不知道怎么解决.搜索了下stackoverflow,上面说是http的postBuffer不够导致的. 要运行以下命令: git config --globa ...

  6. 多线程随笔二(Task)

    Task类是.net 4.0新加进来的特性,对原有的Thread,ThreadPool做了进一步的封装,使得.net平台上的多线程编程变得更加方便.废话不多说,进入正题. 一. Task启动 Task ...

  7. 【转】Spring源码编译

    原文地址: http://www.flyoung.me/2013/08/02/springcodecompile/ 参考资料: https://github.com/spring-projects/s ...

  8. 图解:window与BOM的关系

    window与BOM的关系: 1.https://www.jianshu.com/p/f5409202a835

  9. IP工具类

    import org.slf4j.Logger; import org.slf4j.LoggerFactory; import javax.servlet.http.HttpServletReques ...

  10. Oracle11g的database 和client的区别是什么?

    由于工作需要,刚开始接触oracle数据库,完全小白,下载的时候看到有database和client两种类型可供下载,一时不知如何是好,于是网上询问得知其中区别,在此记录一下自己的无知. “datab ...