一、引言

在讲算法之前,先看两个例子:

例子一:背包问题,一个书包,一堆物品,每个物品都有自己的价值和体积,装满书包,使得装的物品价值最大。

例子二:投资问题,n个项目,第i个项目投资为ci 收益为pi,总投资不得超过C,如何选择项目总收益最大。

如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

二、算法介绍

  在计算智能(computational intelligence)领域有两种基于群智能的算法.蚁群算法(ant colony optimization)和PSO粒子群算法(particle swarm optimization). 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。

PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。

PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。

PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。

三、粒子公式

  在找到这两个最优值时,粒子根据如下的公式来更新自己的速度和新的位置:

v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)

present[] = present[] + v[] (b)

v[] 是粒子的速度, w是惯性权重,present[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.

四、实数编码

  不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误

PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置

粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200

粒子的长度: 这是由优化问题决定, 就是问题解的长度

粒子的范围: 由优化问题决定,每一维可以设定不同的范围

Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20

学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间

中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.

全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再用局部PSO进行搜索.

五、惯性权重

  另外的一个参数是惯性权重, Shi 和Eberhart指出(A modified particle swarm optimizer,1998):当Vmax很小时(对schaffer的f6函数,Vmax<=2),使用接近于1的惯性权重;当Vmax不是很小时(对schaffer的f6函数,Vmax>=3),使用权重w=0.8较好.如果没有Vmax的信息,使用0.8作为权重也是一种很好的选择.惯性权重w很小时偏重于发挥粒子群算法的局部搜索能力;惯性权重很大时将会偏重于发挥粒子群算法的全局搜索能力。

算法(三)粒子群算法PSO的介绍的更多相关文章

  1. 【智能算法】粒子群算法(Particle Swarm Optimization)超详细解析+入门代码实例讲解

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 01 算法起源 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由E ...

  2. C语言实现粒子群算法(PSO)一

    最近在温习C语言,看的书是<C primer Plus>,忽然想起来以前在参加数学建模的时候,用过的一些智能算法,比如遗传算法.粒子群算法.蚁群算法等等.当时是使用MATLAB来实现的,而 ...

  3. 粒子群算法 Particle Swarm Optimization, PSO(转贴收藏)

    粒子群算法(1)----粒子群算法简介 http://blog.csdn.net/niuyongjie/article/details/1569671 粒子群算法(2)----标准的粒子群算法 htt ...

  4. 粒子群算法(PSO)算法解析(简略版)

    粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...

  5. C语言实现粒子群算法(PSO)二

    上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...

  6. 粒子群算法(PSO)

    这几天看书的时候看到一个算法,叫粒子群算法,这个算法挺有意思的,下面说说我个人的理解: 粒子群算法(PSO)是一种进化算法,是一种求得近似最优解的算法,这种算法的时间复杂度可能会达到O(n!),得到的 ...

  7. 【比较】粒子群算法PSO 和 遗传算法GA 的相同点和不同点

    目录 PSO和GA的相同点 PSO和GA不同点 粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解. PSO和G ...

  8. [Algorithm] 群体智能优化算法之粒子群优化算法

    同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...

  9. 基于粒子群算法求解求解TSP问题(JAVA)

    一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选 ...

随机推荐

  1. 点(Dot)与像素(Pixel)的区别

    DPI中的点(Dot)与图像分辨率中的像素(Pixel)是容易混淆的两个概念, DPI中的点可以说是硬件设备最小的显示单元, 而像素则既可是一个点,又可是多个点的集合.在扫描仪扫描图像时,扫描仪的每一 ...

  2. 16Aspx.com源码2013年10月到2013年12月详细

    创建时间FROM: 创建时间TO:   ExtJS合同管理信息系统源码 2013-12-13   [VS2008] 源码介绍: ExtJS合同管理信息系统源码浏览器兼容:IE,Firefox,谷歌等主 ...

  3. 搭建Android开发环境之——Android4.0.3, 4.1, 4.2, 4.3, 4.x,及升级 ADT(22.0.5)和SDK(22.x)

    1.首先要下载相关的软件 1). JDK 6 以上 2). eclipse( Version 3.6.2  or higher ) 点击下载 3). SDK(android-sdk_r18-windo ...

  4. linux netstat 命令详解

    linux netstat 命令详解 1.功能与说明 netstat 用于显示linux中各种网络相关信息.如网络链接 路由表  接口状态链接 多播成员等等. 2.参数含义介绍 -a (all)显示所 ...

  5. startup alter.log spfile.ora

    SQL> select * from v$version where rownum=1; BANNER --------------------------------------------- ...

  6. 201771010118 马昕璐《面向对象程序设计java》第十周学习总结

    第一部分:理论知识学习部分 泛型:也称参数化类型(parameterized type)就是在定义类.接口和方法时,通过类型参数 指示将要处理的对象类型. 泛型程序设计(Generic program ...

  7. 【转载】c++中浅复制与深复制

    https://www.cnblogs.com/xiaodingmu/p/7407307.html

  8. 力扣(LeetCode)453. 最小移动次数使数组元素相等

    给定一个长度为 n 的非空整数数组,找到让数组所有元素相等的最小移动次数.每次移动可以使 n - 1 个元素增加 1. 示例: 输入: [1,2,3] 输出: 3 解释: 只需要3次移动(注意每次移动 ...

  9. C#基础篇九OOP属性结构枚举

    1.设计一个Ticket类,有一个距离属性(本属性只读,在构造方法中赋值),不能为负数,有一个价格属性,价格属性只读,并且根据距离计算价格(1元/公里):-----------0-100公里 票价不打 ...

  10. 查看nginx cache命中率

    一.在http header上增加命中显示 nginx提供了$upstream_cache_status这个变量来显示缓存的状态,我们可以在配置中添加一个http头来显示这一状态,达到类似squid的 ...