Yaoge’s maximum profit

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 982    Accepted Submission(s): 274

Problem Description
Yaoge likes to eat chicken chops late at night. Yaoge has eaten too many chicken chops, so that Yaoge knows the pattern in the world of chicken chops. There are N cities in the world numbered from 1 to N . There are some roads between some cities, and there is one and only one simple path between each pair of cities, i.e. the cities are connected like a tree. When Yaoge moves along a path, Yaoge can choose one city to buy ONE chicken chop and sell it in a city after the city Yaoge buy it. So Yaoge can get profit if Yaoge sell the chicken chop with higher price. Yaoge is famous in the world. AFTER Yaoge has completed one travel, the price of the chicken chop in each city on that travel path will be increased by V .
 
Input
The first line contains an integer T (0 < T ≤ 10), the number of test cases you need to solve. For each test case, the first line contains an integer N (0 < N ≤ 50000), the number of cities. For each of the next N lines, the i-th line contains an integer Wi(0 < Wi ≤ 10000), the price of the chicken chop in city i. Each of the next N - 1 lines contains two integers X Y (1 ≤ X, Y ≤ N ), describing a road between city X and city Y . The next line contains an integer Q(0 ≤ Q ≤ 50000), the number of queries. Each of the next Q lines contains three integer X Y V(1 ≤ X, Y ≤ N ; 0 < V ≤ 10000), meaning that Yaoge moves along the path from city X to city Y , and the price of the chicken chop in each city on the path will be increased by V AFTER Yaoge has completed this travel.
 
Output
For each query, output the maximum profit Yaoge can get. If no positive profit can be earned, output 0 instead.
 
Sample Input
1
5
1
2
3
4
5
1 2
2 3
3 4
4 5
5
1 5 1
5 1 1
1 1 2
5 1 1
1 2 1
 
Sample Output
4
0
0
1
0
/*
hdu 5052 树链剖分(nice) problem:
给你一个树,每次找出u->v上面的最大差值(较小值必需在较大值前面).找出后在给路径所有点加上w solve:
首先是线段树维护差值的问题,在这里错了很久- -. 按照以前的写习惯了,并没想区间合并时候的问题...
树链剖分查找的时候,每次只能查找一条链,所以在这里也要合并(右边链Max - 左边链Min).
而且u->v的话,因为u到(u,v)的lca的节点号是逆序的(根节点较小),所以线段树要维护 左到右and右到左的差值 hhh-2016-08-22 10:53:40
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
#define inf 0x3FFFFFFFFFFFFFFFLL
using namespace std;
const int maxn = 200100;
int head[maxn],tot,pos,son[maxn];
int top[maxn],fp[maxn],fa[maxn],dep[maxn],num[maxn],p[maxn];
int n;
ll a[maxn]; ll MAX(ll a,ll b)
{
return a>b?a:b;
}
ll MIN(ll a,ll b)
{
return a>b?b:a;
}
struct Edge
{
int to,next;
} edge[maxn<<2]; void ini()
{
tot = 0,pos = 1;
clr(head,-1),clr(son,-1);
} void add_edge(int u,int v)
{
edge[tot].to = v,edge[tot].next = head[u],head[u] = tot++;
} void dfs1(int u,int pre,int d)
{
// cout << u << " " <<pre <<" " <<d <<endl;
dep[u] = d;
fa[u] = pre,num[u] = 1;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
dfs1(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void getpos(int u,int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1)return ;
getpos(son[u],sp);
for(int i = head[u]; ~i ; i = edge[i].next)
{
int v = edge[i].to;
if(v != son[u] && v != fa[u])
getpos(v,v);
}
} struct node
{
int l,r,mid;
ll Max,Min;
ll lans,rans;
ll add;
} tree[maxn << 2]; void push_up(int i)
{
tree[i].Max = MAX(tree[lson].Max,tree[rson].Max);
tree[i].Min = MIN(tree[lson].Min,tree[rson].Min);
tree[i].rans = MAX(tree[rson].Max - tree[lson].Min,MAX(tree[lson].rans,tree[rson].rans));
tree[i].lans = MAX(tree[lson].Max - tree[rson].Min,MAX(tree[lson].lans,tree[rson].lans));
if(tree[i].lans < 0) tree[i].lans = 0;
if(tree[i].rans < 0) tree[i].rans = 0;
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].mid=(l+r) >>1;
tree[i].add = 0;
tree[i].Max = 0,tree[i].Min = inf;
tree[i].lans = 0,tree[i].rans = 0;
if(l == r)
{
tree[i].Max = tree[i].Min = a[fp[l]];
return;
}
build(lson,l,tree[i].mid);
build(rson,tree[i].mid+1,r);
push_up(i);
}
void update(int i,ll d)
{
tree[i].Max += d,tree[i].Min += d;
tree[i].add += d;
} void push_down(int i)
{
if(tree[i].add)
{
update(lson,tree[i].add),update(rson,tree[i].add);
tree[i].add = 0;
}
} void update_area(int i,int l,int r,ll val)
{
if(tree[i].l >= l && tree[i].r <= r)
{
update(i,val);
return ;
}
push_down(i);
int mid = tree[i].mid;
if(l <= mid)
update_area(lson,l,r,val);
if(r > mid)
update_area(rson,l,r,val);
push_up(i);
} ll query(int i,int l,int r,int flag,ll& MaxPrice,ll& MinPrice)
{
if(tree[i].l >= l && tree[i].r <= r)
{
MinPrice = tree[i].Min;
MaxPrice = tree[i].Max;
if(flag)
{ return tree[i].rans;
}
else
{
return tree[i].lans;
}
}
push_down(i);
int mid = tree[i].mid;
if(r <= mid)
return MAX(0LL,query(lson,l,r,flag,MaxPrice,MinPrice));
else if(l > mid)
return MAX(0LL,query(rson,l,r,flag,MaxPrice,MinPrice));
else
{
ll ta = 0;
ll max1,max2,min1,min2;
ll ans = MAX(query(lson,l,mid,flag,max1,min1),query(rson,mid+1,r,flag,max2,min2));
if(flag)
ta = max2 - min1;
else
ta = max1 - min2;
MaxPrice = MAX(max1,max2);
MinPrice = MIN(min1,min2);
ta = MAX(ta,0LL);
return MAX(ans,ta);
}
push_up(i);
} void make_add(int u,int v,ll val)
{
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
update_area(1,p[f1],p[u],val);
u = fa[f1],f1 = top[u];
}
if(dep[u] > dep[v])
swap(u,v);
update_area(1,p[u],p[v],val);
return ;
} ll make_query(int u,int v)
{
ll tmin,tmax,tMin,tMax;
ll cmin,cmax,cMin,cMax;
tMin = tmin = tree[1].Max;
tMax = tmax = 0;
ll cnt = 0;
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] > dep[f2])
{
// cout << p[f1] <<" "<<p[u] <<endl;
cnt = MAX(cnt,query(1,p[f1],p[u],0,cmax,cmin));
cnt = MAX(cnt,cmax - tmin);
cnt = MAX(cnt,tMax - cmin);
tmin = MIN(cmin,tmin);
tmax = MAX(cmax,tmax);
u = fa[f1],f1 = top[u];
// tmax = max(tmax,cmax);
}
else
{
// cout << p[f2] <<" "<<p[v] <<endl;
cnt = MAX(cnt,query(1,p[f2],p[v],1,cMax,cMin));
cnt = MAX(cnt,tMax - cMin);
cnt = MAX(cnt,cMax-tmin);
tMax = MAX(tMax,cMax);
tMin = MIN(tMin,cMin);
v = fa[f2],f2 = top[v];
// tMin = min(tMin,cMin);
}
}
if(dep[u] > dep[v])
{
cnt =MAX(cnt,query(1,p[v],p[u],0,cmax,cmin));
cnt =MAX(cnt,cmax-tmin);
tmin = MIN(tmin,cmin);
cnt = MAX(cnt,tMax-tmin);
}
else
{
cnt =MAX(cnt,query(1,p[u],p[v],1,cMax,cMin));
// cout <<"max" <<cMax <<" " <<"min" <<cMin <<endl;
cnt = MAX(cnt,tMax-cMin);
tMax = MAX(tMax,cMax);
cnt = MAX(cnt,tMax-tmin);
}
return cnt;
} /*
5
3 1 1 1
1 2 2 3
3
1 1 500000000
2 1 1
3 1 1
*/
int main()
{
// freopen("in.txt","r",stdin);
int T;
int m,u,v;
ll w;
scanf("%d",&T);
while(T--)
{
ini();
scanf("%d",&n);
for(int i = 1; i <= n; i++)
scanf("%I64d",&a[i]);
for(int i =1; i <n; i++)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
dfs1(1,0,0);
getpos(1,1);
build(1,1,pos-1);
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
scanf("%d%d%I64d",&u,&v,&w);
printf("%I64d\n",make_query(u,v));
make_add(u,v,w);
}
}
return 0;
}

  

hdu 5052 树链剖分的更多相关文章

  1. HDU 5052 /// 树链剖分+线段树区间合并

    题目大意: 给定n (表示树有n个结点) 接下来n行给定n个点的点权(在这个点上买鸡或者卖鸡的价钱就是点权) 接下来n-1行每行给定 x y 表示x结点和y结点之间有一条边 给定q (表示有q个询问) ...

  2. hdu 5893 (树链剖分+合并)

    List wants to travel Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/O ...

  3. hdu 4897 树链剖分(重轻链)

    Little Devil I Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others ...

  4. hdu 5274 树链剖分

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  5. HDU 3966 (树链剖分+线段树)

    Problem Aragorn's Story (HDU 3966) 题目大意 给定一颗树,有点权. 要求支持两种操作,将一条路径上的所有点权值增加或减少ai,询问某点的权值. 解题分析 树链剖分模板 ...

  6. hdu 3966(树链剖分+线段树区间更新)

    传送门:Problem 3966 https://www.cnblogs.com/violet-acmer/p/9711441.html 学习资料: [1]线段树区间更新:https://blog.c ...

  7. HDU 3966 /// 树链剖分+树状数组

    题意: http://acm.hdu.edu.cn/showproblem.php?pid=3966 给一棵树,并给定各个点权的值,然后有3种操作: I x y z : 把x到y的路径上的所有点权值加 ...

  8. hdu 4729 树链剖分

    思路:这个树链剖分其实还是比较明显的.将边按权值排序后插入线段树,然后用线段树查找区间中比某个数小的数和,以及这样的数的个数.当A<=B时,就全部建新的管子. 对于A>B的情况比较 建一条 ...

  9. hdu 3966 树链剖分

    思路:树链剖分入门题,我这门入得好苦啊,程序很快写出来了,可是在LCA过程中把update函数里的左右边界位置写反了,一直RE到死. #pragma comment(linker, "/ST ...

随机推荐

  1. 原生js模拟锚点,实现点击后,内容定位到本页的对应位置

    今天在做angularJS项目过程中,遇见了一个需求,在一个页面中有多个表格,每个表格都有对应的分页,点击顶部对应的模块,可以定位到每个表格模块具体的位置. 页面如下所示: 在angular中,为了使 ...

  2. OpenCascade Primitives BRep-Torus

    OpenCascade Primitives BRep-Torus eryar@163.com Abstract. BRep is short for Boundary Representation. ...

  3. 获取OpenFileDialog的文件名和文件路径

    得到文件名 string fileName = ofd.SafeFileName; 得到路径 string filePath = System.IO.Path.GetDirectoryName(ofd ...

  4. SDWebImage清除图片缓存

    背景: 使用 SDWebImage 库,由于内存中一直缓存着加载的图片,而导致内存过高(我们无法手动管理内存),弹出内存警告而导致程序很卡或者直接crash掉. 我的解决方法: 在AppDelegat ...

  5. VisualCaptcha – 灵活的可视化验证码解决方案

    visualCaptcha 是一个可配置的验证码解决方案,专注于可访问性和简单性,同时保持安全性.它也支持移动,视网膜设备,并有一个创新的可访问性的解决方案. visualCaptcha 现在可以跨多 ...

  6. jQuery学习笔记(四):attr()与prop()的区别

    这一节针对attr()与prop()之间的区别进行学习. 先看看官方文档是如何解释两者之间功能差异的: attr() Get the value of an attribute for the fir ...

  7. Js分页插件,支持页面跳转

    这里先给出API: 你只需要提供一个对象涉及以下几项属性,你来设置属性值,通过jq对象链式调用page()以参数形式来加载这个对象,按照参数要求会自动生成分页功能, 参数中pageEvent是可以让你 ...

  8. 解决浏览器background-image属性不支持css3动画

    问题 最近在使用background-image属性来实现css3的逐帧动画时,碰到了个问题.在chrome浏览器上,background-image属性是支持css3动画的,但是到了firefox上 ...

  9. C++ 二维数组(双重指针作为函数参数)

    本文的学习内容参考:http://blog.csdn.net/yunyun1886358/article/details/5659851 http://blog.csdn.net/xudongdong ...

  10. Genymotion error:The virtual device got no IP address

    控制面板,网络和intent,网络和共享中心,更改适配器设置,看下你的VirtualBox Host-Only Ethernet Adapter这个显卡 启动了没有, 没有就启动它!!!