io.netty.channel.DefaultChannelPipeline implements ChannelPipleline
 

DefaultChannelPiple给出了ChannelPipleline的默认实现。ChannelPipleline是一个双向链表,本章的内容是分析默认实现中双向链表的实现。

双向列表的的数据结构

  DefaultChannelPiple使用了三种节点类型: HeadContext, TailContext, DefaultChannelHandlerContext,这三中类型都是派生自AbstractChannelHandlerContext,这个抽象类中有双向链表所需要的两个关键属性next和prev。链表的初始化代码在构造方法中。

 protected DefaultChannelPipeline(Channel channel) {
         this.channel = ObjectUtil.checkNotNull(channel, "channel");

4         tail = new TailContext(this);
5         head = new HeadContext(this);
6
7         head.next = tail;
8         tail.prev = head;
  }

  构造方法的第4-8行,时候是链表的初始化代码。HeadContext是链表头的类型,TailContext是链表尾的类型,这两个类型是DefaultChannelPiple的内部类。链表的头和尾节点是不持有channelHandler的,相比于中间节点,这两个节点比较特殊。有专门的方法用来创建中间节点,如下所示:

 private AbstractChannelHandlerContext newContext(EventExecutorGroup group, String name, ChannelHandler handler) {
         return new DefaultChannelHandlerContext(this, childExecutor(group), name, handler);
 }

 

添加channelHandler

  向链表中添加channelHandler的方法有两大类型:

  1. addFirst,addLast
  2. addAfter,addBefore

  在ChannelPiple中,每一个handler是有名字的,如果用户没有给handler命名,在添加过程中会为它生成一个不重复的名字。如果用户给handler命名重复,添加handler将会失败同时抛出异常。两种类型的添加方法最大的不同之处在于,第1中会把新节点添加在head之后或tail之前。第2种必须先要首先找到指定名字的节点,然后把新节点添加到这个节点之后或之前。如果没找到指定名字的节点也会导致添加失败同时抛出异常。下面以addAfter为例分析添加过程。

 public final ChannelPipeline addAfter(
             EventExecutorGroup group, String baseName, String name, ChannelHandler handler) {
         final AbstractChannelHandlerContext newCtx;
         final AbstractChannelHandlerContext ctx;

         synchronized (this) {
             checkMultiplicity(handler);
 8             name = filterName(name, handler);
 9             ctx = getContextOrDie(baseName);
10
11             newCtx = newContext(group, name, handler);
12
13             addAfter0(ctx, newCtx);

             EventExecutor executor = newCtx.executor();
             if (!executor.inEventLoop()) {
                 newCtx.setAddPending();
                 executor.execute(new Runnable() {
                     @Override
                     public void run() {
21                         callHandlerAdded0(newCtx);
                     }
                 });
                 return this;
             }
         }
27         callHandlerAdded0(newCtx);
         return this;
 }

  第8行,filterName方法,确保handler有一个名字,如果name==null, 生成一个不重复的名字。然后检查是否有重名的,如果用户指定名字重复抛出异常。

  第9行,找到baseName对应的节点,如果没有抛出异常。

  第11行, 创建新的节点,这个节点将持有hanler,同时给这个节点分配一个eventExecutor。

  第13行,添加链表节点的操作。

  第21,27行,调用handler的handlerAdded方法,如果捕捉到异常,从链表中删除这个刚刚添加的节点,然后调用handler的handlerRemoved方法, 调用fireExceptionCaught方法触发异常事件。

  其它几个添加方法几个add方法和addAfter大致相同。addBefore是把addAfter0变成了addBefore0。addFirst中没有getContextOrDie调用,把addAfter0替换陈addFirst0。addLast在addFirst的基础上把addFirst0替换成addLast0。

  名字是维护链表节点的一个重要因素,DefaultChannelPipleline需要确保链表中的每个节点的名字都重复,这样它才能通过名字找到一个唯一的节点。用户添加一个handler时,如果由于用户命名不当导致的名字重复,这个handler将会被拒绝添加的链表中。如果用户以匿名方式添加handler,添加之前DefaultChannelPipleline会为这个handler生成一个不重复的名字,这个功能在filterName方法中实现。

 private String filterName(String name, ChannelHandler handler) {
        if (name == null) {
            return generateName(handler);
        }
        checkDuplicateName(name);
        return name;
}

  generateName方法负责为匿名的handler生成一个名字,checkDuplicateName负责验证用户提供的名字是否重复。名字的生成规则是handler的类型名+"#n",假设你的handler的类型名是com.test.YourClass, 那么生成名字将是YourClass#0, YourClass#1, ..., YourClass#n。

删除链表节点

  所有的remove方法最终都会调用到private AbstractChannelHandlerContext remove(final AbstractChannelHandlerContext ctx)方法.

 private AbstractChannelHandlerContext remove(final AbstractChannelHandlerContext ctx) {
         assert ctx != head && ctx != tail;

         synchronized (this) {
 5             remove0(ctx);

             EventExecutor executor = ctx.executor();
             if (!executor.inEventLoop()) {
                 executor.execute(new Runnable() {
                     @Override
                     public void run() {
12                         callHandlerRemoved0(ctx);
                     }
                 });
                 return ctx;
             }
         }
18         callHandlerRemoved0(ctx);
         return ctx;
 }

  5行,从链表结构中删除handler。

  12,18行, 调用handler的handlerRemoved方法。

链表节点查找

  查找方法get最终都会调用内部的context0方法,这个方法是纯粹的链表操作,比较单纯。

替换链表节点

  所有的replace方法最终都会调用内部的replace方法:

  private ChannelHandler replace(final AbstractChannelHandlerContext ctx, final String newName, ChannelHandler newHandler)

  这个方法代码结构与addAfter相似,不同的是在链表操作上是一个替换操作,之后会先调用被替换handler的handlerRemoved方法,然后调用新handler的handlerAdded方法。

链表操作会handler方法之间的调用关系

链表方法 ChannelHandler方法
addBefore,addAfter,addFirst,addLast handlerAdded  
get
remove,removeFirst,removeLast handleRemoved
replace handleRemoved, handlerAdded

  

netty源码解解析(4.0)-9 ChannelPipleline的默认实现-链表管理的更多相关文章

  1. netty源码解解析(4.0)-10 ChannelPipleline的默认实现--事件传递及处理

    事件触发.传递.处理是DefaultChannelPipleline实现的另一个核心能力.在前面在章节中粗略地讲过了事件的处理流程,本章将会详细地分析其中的所有关键细节.这些关键点包括: 事件触发接口 ...

  2. netty源码解解析(4.0)-11 Channel NIO实现-概览

      结构设计 Channel的NIO实现位于io.netty.channel.nio包和io.netty.channel.socket.nio包中,其中io.netty.channel.nio是抽象实 ...

  3. netty源码解解析(4.0)-17 ChannelHandler: IdleStateHandler实现

    io.netty.handler.timeout.IdleStateHandler功能是监测Channel上read, write或者这两者的空闲状态.当Channel超过了指定的空闲时间时,这个Ha ...

  4. netty源码解解析(4.0)-18 ChannelHandler: codec--编解码框架

    编解码框架和一些常用的实现位于io.netty.handler.codec包中. 编解码框架包含两部分:Byte流和特定类型数据之间的编解码,也叫序列化和反序列化.不类型数据之间的转换. 下图是编解码 ...

  5. netty源码解解析(4.0)-20 ChannelHandler: 自己实现一个自定义协议的服务器和客户端

    本章不会直接分析Netty源码,而是通过使用Netty的能力实现一个自定义协议的服务器和客户端.通过这样的实践,可以更深刻地理解Netty的相关代码,同时可以了解,在设计实现自定义协议的过程中需要解决 ...

  6. netty源码解解析(4.0)-15 Channel NIO实现:写数据

    写数据是NIO Channel实现的另一个比较复杂的功能.每一个channel都有一个outboundBuffer,这是一个输出缓冲区.当调用channel的write方法写数据时,这个数据被一系列C ...

  7. netty源码解解析(4.0)-8 ChannelPipeline的设计

    io.netty.channel.ChannelPipeline   设计原理 上图中,为了更直观地展示事件处理顺序, 故意有规律地放置两种handler的顺序,实际上ChannelInboundHa ...

  8. netty源码解解析(4.0)-14 Channel NIO实现:读取数据

     本章分析Nio Channel的数据读取功能的实现. Channel读取数据需要Channel和ChannelHandler配合使用,netty设计数据读取功能包括三个要素:Channel, Eve ...

  9. netty源码解解析(4.0)-4 线程模型-概览

    netty线程体系概览 netty的高并发能力很大程度上由它的线程模型决定的,netty定义了两种类型的线程: I/O线程: EventLoop, EventLoopGroup.一个EventLoop ...

随机推荐

  1. 我厂 WiFi SDK 开源了, 直接开源 WiFi 万能钥匙核心功能,造福中小开发者

    官方地址: http://global.18wifibank.com/ github: https://github.com/yibawifi/wifisdk

  2. C++调用V8与JS交互

    C++访问JS函数 C++部分: /** * COMPILE foo.js AT THE FIRST COMMAND PROMPT TO RUN foo.js */ #include <v8.h ...

  3. Mac OS X 上的安装nsq并使用

    安装: brew install nsq 使用: The following steps will run a small NSQ cluster on your local machine and ...

  4. oracle-Oracle试题

    ylbtech-doc:oracle-Oracle试题 oracle-Oracle试题 1.A,返回顶部 01.{Oracle题目}你判断下面语句,有什么作用?(选择1项)     GRANT upd ...

  5. 如何下载github项目中的部分文件(文件夹)

    https://minhaskamal.github.io/DownGit/#/home 将你要下载的链接放进去即可.

  6. 常见设计模式 (python代码实现)

    1.创建型模式 单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对 ...

  7. ZooKeeper Dynamic Reconfiguration (dynamicConfigFile) ZooKeeper动态配置

    有人翻译的地址:https://www.cnblogs.com/dupang/p/5649843.html ZooKeeper Dynamic Reconfiguration Overview Cha ...

  8. 练习MD5加密jar包编写

    简介 参数签名可以保证开发的者的信息被冒用后,信息不会被泄露和受损.原因在于接入者和提供者都会对每一次的接口访问进行签名和验证. 签名sign的方式是目前比较常用的方式. 第1步:接入者把需求访问的接 ...

  9. 短信猫+kannel调试一例

    同事做一短信网关平台,采用kannel软件. 安装正常,配置文件如下: # Vodafone 3G cardgroup = coreadmin-port = 13000admin-password = ...

  10. java中的锁之AbstractQueuedSynchronizer源码分析(一)

    一.AbstractQueuedSynchronizer类介绍. 该抽象类有两个内部类,分别是静态不可继承的Node类和公有的ConditionObject类.AbstractQueuedSynchr ...