Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].

The objective of the game is to end with the most stones.  The total number of stones is odd, so there are no ties.

Alex and Lee take turns, with Alex starting first.  Each turn, a player takes the entire pile of stones from either the beginning or the end of the row.  This continues until there are no more piles left, at which point the person with the most stones wins.

Assuming Alex and Lee play optimally, return True if and only if Alex wins the game.

Example 1:

Input: [5,3,4,5]
Output: true
Explanation:
Alex starts first, and can only take the first 5 or the last 5.
Say he takes the first 5, so that the row becomes [3, 4, 5].
If Lee takes 3, then the board is [4, 5], and Alex takes 5 to win with 10 points.
If Lee takes the last 5, then the board is [3, 4], and Alex takes 4 to win with 9 points.
This demonstrated that taking the first 5 was a winning move for Alex, so we return true.

Note:

1. 2 <= piles.length <= 500
2. piles.length is even.
3. 1 <= piles[i] <= 500
4. sum(piles) is odd.

init;

A[i][i] = piles[i]

A[i][i+1] = max(piles[i], piles[i+1])

1. Constraints

1) size [2,500], even number

2) element [1,50], integer

3) sum(piles) is odd, no ties

2. Ideas

Dynamic Programming   ,     T: O(n^2)     S; O(n^2)

3. Code

class Solution:
def stoneGame(self, piles):
n = len(piles)
dp, flag = [[0]*n for _ in range(n)], [[0]*n for _ in range(n)]
def helper(left, right):
if flag[left][right]:
return dp[left][right]
if left == right:
dp[left][right] = piles[left]
elif left + 1 = right:
dp[left][right] = max(piles[left], piles[right])
elif left < right: # left > right, init 0
value_l = piles[left] + min(helper(left+2, right), helper(left + 1, right -1))
value_r = piles[right] + min(helper(left+1, right-1), helper(left, right - 2))
dp[left][right] = max(value_l, value_r)
flag[left][right] = 1
return dp[left][right]
return helper(0, n-1) > sum(piles)//2

4. Test cases

[5,3,4,5]

## [LeetCode] 877. Stone Game == [LintCode] 396. Coins in a Line 3_hard tag: 区间Dynamic Programming, 博弈的更多相关文章

1. [LeetCode] 312. Burst Balloons_hard tag: 区间Dynamic Programming

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by ...

2. [LintCode] 395. Coins in a Line 2_Medium tag: Dynamic Programming, 博弈

Description There are n coins with different value in a line. Two players take turns to take one or ...

3. [LeetCode] questions conclusion_ Dynamic Programming

Questions: [LeetCode] 198. House Robber _Easy tag: Dynamic Programming [LeetCode] 221. Maximal Squar ...

4. [LeetCode] 877. Stone Game 石子游戏

Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, ...

5. lintcode 394. Coins in a Line 、leetcode 292. Nim Game 、lintcode 395. Coins in a Line II

变型:如果是最后拿走所有石子那个人输,则f[0] = true 394. Coins in a Line dp[n]表示n个石子,先手的人,是必胜还是必输.拿1个石子,2个石子之后都是必胜,则当前必败 ...

6. [LintCode] 394. Coins in a Line_ Medium tag:Dynamic Programming_博弈

Description There are n coins in a line. Two players take turns to take one or two coins from right ...

7. 396. Coins in a Line III

刷 July-31-2019 换成只能从左边或者右边拿.这个确实和Coins in a Line II有关系. 和上面思路一致,也是MinMax思路,只不过是从左边和右边选,相应对方也是这样. pub ...

8. LeetCode 877. Stone Game

原题链接在这里:https://leetcode.com/problems/stone-game/ 题目: Alex and Lee play a game with piles of stones. ...

9. leetcode 877. Stone Game 详解 -——动态规划

原博客地址 https://blog.csdn.net/androidchanhao/article/details/81271077 题目链接 https://leetcode.com/proble ...

## 随机推荐

1. graph | hungary

匈牙利算法,求二分图最大匹配. 若P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径.(M为一个匹配) 由增广路 ...

2. 解析php时间戳与日期的转换

php中时间戳与日期的转换. 实现功能:获取某个日期的时间戳,或获取某个时间的PHP时间戳. strtotime能将任何英文文本的日期时间描述解析为Unix时间戳,我们结合mktime()或date( ...

以0805封装为例 1.打开PCB editor-> Allegro PCB Design XL 2.File -> New ① Drawing Type -> Package Sy ...

4. 转载SSIS中的容器和数据流—数据转换（Transformations）

对数据流来说按照需求将数据转换成需要的格式是数据操作中的一个关键的步骤.例如想要得到聚合排序后的运算结果,转换可以实现这种操作.和SQL Server 2000 DTS完全不同,这些操作不需要编写sc ...

5. JDBC——架构层、驱动

JDBC(java Datebase Connector) jdbc驱动程序 四种类型: jdbc-odbc桥接驱动程序 Native-API JDBC-Net Native-Protocol (常见 ...

6. Educational Codeforces Round 9

Educational Codeforces Round 9 Longest Subsequence 题目描述:给出一个序列,从中抽出若干个数,使它们的公倍数小于等于\(m\),问最多能抽出多少个数, ...

7. Python单元测试框架

目录 概况 系统要求 使用PyUnit构建自己的测试 安装 测试用例介绍 创建一个简单测试用例 复用设置代码:创建固件 包含多个测试方法的测试用例类 将测试用例聚合成测试套件 嵌套测试用例 测试代码的 ...

8. #161: 给定n*n由0和1组成的矩阵，如果矩阵的每一行和每一列的1的数量都是偶数，则认为符合条件。 你的任务就是检测矩阵是否符合条件

试题描述 给定n*n由0和1组成的矩阵,如果矩阵的每一行和每一列的1的数量都是偶数,则认为符合条件. 你的任务就是检测矩阵是否符合条件,或者在仅改变一个矩阵元素的情况下能否符合条件. "改变 ...

9. ZOJ 3211dream city dp（效率优化）

Dream City Time Limit: 1 Second      Memory Limit:32768 KB JAVAMAN is visiting Dream City and he see ...

10. ML.NET---.NET下的机器学习引擎（简介）

ML.NET 是一个跨平台的开源机器学习框架,它可以使 .NET 开发人员更容易的开展机器学习工作. ML.NET 允许 .NET 开发人员开发自己的模型,即使没有机器学习的开发经验,也可以很容易的将 ...