转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/

NeuronLayer,顾名思义这里就是神经元,激活函数的相应层。我们知道在blob进入激活函数之前和之后他的size是不会变的,而且激活值也就是输出 \(y\) 只依赖于相应的输入 \(x\)。在Caffe里面所有的layer的实现都放在src文件夹下的layer文件夹中,基本上很多文章里应用到的layer类型它都有cpu和cuda的实现。
在caffe里面NeuronLayer比较多,在此罗列了一下

  • AbsValLayer
  • BNLLLayer
  • DropoutLayer
  • ExpLayer
  • LogLayer
  • PowerLayer
  • ReLULayer
  • CuDNNReLULayer
  • SigmoidLayer
  • CuDNNSigmoidLayer
  • TanHLayer
  • CuDNNTanHLayer
  • ThresholdLayer
  • PReLULayer

Caffe里面的Neuron种类比较多方便人们使用,这里我们着重关注几个主要的Neuro_layer

ReLULayer

目前在激活层的函数中使用ReLU是非常普遍的,一般我们在看资料或者讲义中总是提到的是Sigmoid函数,它比Sigmoid有更快的收敛性,因为sigmoid在收敛的时候越靠近目标点收敛的速度会越慢,也是其函数的曲线形状决定的。而ReLULayer则相对收敛更快,具体可以看Krizhevsky 12年的那篇ImageNet CNN文章有更详细的介绍。
其计算的公式是:
\[y = \max(0, x)\]
如果有负斜率式子变为:
\[ y = \max(0, x) + \nu \min(0, x)\]
反向传播的公式
\[ \frac{\partial E}{\partial x} = \left\{
\begin{array}{lr}
\nu \frac{\partial E}{\partial y} & \mathrm{if} \; x \le 0 \\
\frac{\partial E}{\partial y} & \mathrm{if} \; x > 0
\end{array} \right.
\]
其在cafffe中的forward和backward函数为

template <typename Dtype>
void ReLULayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  const int count = bottom[0]->count();
  Dtype negative_slope = this->layer_param_.relu_param().negative_slope();
  for (int i = 0; i < count; ++i) {
    top_data[i] = std::max(bottom_data[i], Dtype(0))
        + negative_slope * std::min(bottom_data[i], Dtype(0));
  }
}

template <typename Dtype>
void ReLULayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* bottom_data = bottom[0]->cpu_data();
    const Dtype* top_diff = top[0]->cpu_diff();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    const int count = bottom[0]->count();
    Dtype negative_slope = this->layer_param_.relu_param().negative_slope();
    for (int i = 0; i < count; ++i) {
      bottom_diff[i] = top_diff[i] * ((bottom_data[i] > 0)
          + negative_slope * (bottom_data[i] <= 0));
    }
  }
}

SigmoidLayer

Sigmoid函数,也称为阶跃函数,函数曲线是一个优美的S形。目前使用Sigmoid函数已经不多了,大多使用ReLU来代替,其对应的激活函数为:
\[y = (1 + \exp(-x))^{-1}\]
其反向传播时
\[\frac{\partial E}{\partial x}
= \frac{\partial E}{\partial y} y (1 - y)\]
其相应的forward和backward的函数为

template <typename Dtype>
void SigmoidLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  const int count = bottom[0]->count();
  for (int i = 0; i < count; ++i) {
    top_data[i] = sigmoid(bottom_data[i]);
  }
}

template <typename Dtype>
void SigmoidLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* top_data = top[0]->cpu_data();
    const Dtype* top_diff = top[0]->cpu_diff();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    const int count = bottom[0]->count();
    for (int i = 0; i < count; ++i) {
      const Dtype sigmoid_x = top_data[i];
      bottom_diff[i] = top_diff[i] * sigmoid_x * (1. - sigmoid_x);
    }
  }
}

DropoutLayer

DropoutLayer现在是非常常用的一种网络层,只用在训练阶段,一般用在网络的全连接层中,可以减少网络的过拟合问题。其思想是在训练过程中随机的将一部分输入x之置为0。
\[y_{\mbox{train}} = \left\{
\begin{array}{ll}
\frac{x}{1 - p} & \mbox{if } u > p \\
0 & \mbox{otherwise}
\end{array} \right.
\]
其forward_cpu和backward_cpu为:

template <typename Dtype>
void DropoutLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  unsigned int* mask = rand_vec_.mutable_cpu_data();
  const int count = bottom[0]->count();
  if (this->phase_ == TRAIN) {
    // Create random numbers构造随机数,这里是通过向量掩码来和bottom的数据相乘,scale_是控制undropped的比例
    caffe_rng_bernoulli(count, 1. - threshold_, mask);
    for (int i = 0; i < count; ++i) {
      top_data[i] = bottom_data[i] * mask[i] * scale_;
    }
  } else {
    caffe_copy(bottom[0]->count(), bottom_data, top_data);
  }
}

template <typename Dtype>
void DropoutLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    if (this->phase_ == TRAIN) {
      const unsigned int* mask = rand_vec_.cpu_data();
      const int count = bottom[0]->count();
      for (int i = 0; i < count; ++i) {
        bottom_diff[i] = top_diff[i] * mask[i] * scale_;
      }
    } else {
      caffe_copy(top[0]->count(), top_diff, bottom_diff);
    }
  }
}

Caffe源码解析6:Neuron_Layer的更多相关文章

  1. Caffe源码解析7:Pooling_Layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Pooling 层一般在网络中是跟在Conv卷积层之后,做采样 ...

  2. Caffe源码解析5:Conv_Layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Vision_layer里面主要是包括了一些关于一些视觉上的操 ...

  3. Caffe源码解析4: Data_layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ data_layer应该是网络的最底层,主要是将数据送给blo ...

  4. Caffe源码解析3:Layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ layer这个类可以说是里面最终的一个基本类了,深度网络呢就是 ...

  5. Caffe源码解析2:SycedMem

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang loves baiyan/ 看到SyncedMem就知道,这是在做内存同步的操作.这类个类的 ...

  6. Caffe源码解析1:Blob

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 首先看到的是Blob这个类,Blob是作为Caffe中数据流通的 ...

  7. caffe源码解析

    http://blog.csdn.net/lanxuecc/article/details/53186613

  8. caffe源码阅读

    参考网址:https://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html 1.caffe代码层次熟悉blob,layer,net,solve ...

  9. 【Caffe】源码解析----caffe.proto (转载)

    分析caffe源码,看首先看caffe.proto,是明智的选择.好吧,我不是创造者,只是搬运工. 原文地址:http://blog.csdn.net/qq_16055159/article/deta ...

随机推荐

  1. 需要UWP Vendor一名

    工作地点北京,海淀,微软大厦2号楼,小冰项目组.

  2. SQL Server删除重复行的6个方法

    SQL Server删除重复行是我们最常见的操作之一,下面就为您介绍六种适合不同情况的SQL Server删除重复行的方法,供您参考. 1.如果有ID字段,就是具有唯一性的字段 delect   ta ...

  3. Error:Execution failed for task &#39;:clean&#39;. &gt; Unable to delete directory :\build\intermediates (转)

    第一种方法: build文件夹,可以使用360文件粉碎机删除,然后重启Android Studio即可! 转自 第二种方法: 进入studio,进入settings,搜索instant run,进入该 ...

  4. 进程管理三大扩展工具htop

    三大进程管理监控工具 HTOP 介绍: Htop是一款运行于Linux系统监控与进程管理软件,htop提供所有进程的列表,并且使用彩色标识出处理器.swap和内存状态.用户一般可以在top无法提供详尽 ...

  5. iOS开发常见错误解决方法

    1.出现下面的错误: StoryboardApp[8593:207] Failed to instantiate the default view controller for UIMainStory ...

  6. .NET逻辑分层架构总结

    一.基础知识准备: 1.层的原则: (1)每一层以接口方式供上层调用. (2)上层只能调用下层. (3)依赖分为松散交互和严格交互两种. 2.业务逻辑分类: (1)应用逻辑. (2)领域逻辑. 3.采 ...

  7. (Problem 29)Distinct powers

    Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...

  8. codeforces 598A Tricky Sum

    题目链接:http://codeforces.com/contest/598/problem/A 题目分类:大数 题意:1到n 如果是2的次方则减去这个数,否则就加上这个数,求最后的结果是多少 题目分 ...

  9. Codeforces 432D Prefixes and Suffixes(KMP+dp)

    题目连接:Codeforces 432D Prefixes and Suffixes 题目大意:给出一个字符串,求全部既是前缀串又是后缀串的字符串出现了几次. 解题思路:依据性质能够依据KMP算法求出 ...

  10. 特殊的string类型

    1.前言 string是属于引用类型的,这个大家都知道吧?但是平常在使用的过程中,发现它还是拥有一些值类型的特征的,这到底是为什么呢? 原因就是.Net考虑到假如大量的操作string对象的时候,大量 ...