首页
Python
Java
PHP
IOS
Andorid
NodeJS
JavaScript
HTML5
SPSS数据分析—广义线性混合模型
SPSS数据分析—广义线性混合模型
广义线性混合模型是目前线性模型范畴内最为完备的模型框架,它是广义线性模型的进一步延伸,进一步突破适用条件,因变量既 可以非正态,也可以非独立,由于其最为复杂,因此SPSS对其输出结果采用模型格式,而不是传统的表格形式,下面我们来看一个 例子 我们还是使用一般线性混合模型的数据来进行拟合 分析—混合模型—广义线性
SPSS数据分析—广义线性模型
我们前面介绍的一般线性模型.Logistic回归模型.对数线性模型.Poisson回归模型等,实际上均属于广义线性模型的范畴,广义 线性模型包含的范围非常广泛,原因在于其对于因变量.因变量的概率分布等条件的限制放宽,使其应用范围加大. 广义线性模型由以下几个部分组成 1.因变量广义线性模型的因变量还是要去独立性,但是分布不再局限于正态分布一种,而是可以是指数族概率分布的任意一种,其方差也可 以不稳定,但必须要能表达为依赖均值的函数 2.线性部分广义线性模型因变量与自变量必须为线性关系,即因变量与
SPSS数据分析—广义估计方程
广义线性模型虽然很大程度上拓展了线性模型的应用范围,但是其还是有一些限制条件的,比如因变量要求独立,如果碰到重复测 量数据这种因变量不独立的情况,广义线性模型就不再适用了,此时我们需要使用的是广义估计方程. 广义估计方程最主要的工作是为每个观察对象单独指定一个作业相关矩阵,从而解决了因变量不独立的问题. 下面看一个例子还是用之前重复测量数据的例子,我们用广义估计方程进行拟合 分析—广义线性模型—广义估计方程 前面我们选择的作业矩阵为默认的独立无相关,也就是认为该数据的因变量之间是不相关的,这和实
SPSS数据分析方法不知道如何选择
一提到数学,高等数学,线性代数,概率论与数理统计,数值分析,空间解析几何这些数学课程,头疼呀.作为文科生,遇见这些课程时,通常都是各种寻求帮助,班上有位宅男数学很厉害,各种被女生‘围观’,这数学为什么这么难,学了有啥用呀. 有用的,当做数据分析的时候,使用到SPSS,在线SPSS分析的时候就知道用处了,在写论文的时候会用到SPSS数据分析,工作的时候也会用到SPSS数据分析.此时才知道原来数学很重要.我的数学不好肿么办?听我一 一道来. 1. 数据类型 学过数学的童鞋都知道,数学里面分了两类
快速掌握SPSS数据分析
SPSS难吗?无非就是数据类型的区别后,就能理解应该用什么样的分析方法,对应着分析方法无非是找一些参考资料进行即可.甚至在线网页SPSS软件直接可以将数据分析结果指标人工智能地分析出来,这有多难呢?本文章将周老师(统计学专家)8年的数据分析经验浓缩,便于让不会数据分析的同学,在学习数据分析的过程中可以少走弯路,树立数据分析价值观,以及以数据进行决策的思维意识,并且可以快速的掌握数据分析.本文章分为四个板块进行说明,一是数据分析思维的培养.二是数据间的几类关系情况.三是数据分析方法的选择.四是
SPSS数据分析—多分类Logistic回归模型
前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logistic回归模型和无序多分类Logistic回归模型 一.有序多分类Logistic回归模型 有序多分类Logistic回归模型拟合的基本方法是拟合因变量水平数-1个Logistic回归模型,也称为累积多分类Logit模型,实际上就是将因变量依次分割成两个等级,对这两个等级建立二分类Logistic
SPSS数据分析—判别分析
判别分析作为一种多元分析技术应用相当广泛,和其他多元分析技术不同,判别分析并没有将降维作为主要任务,而是通过建立判别函数来概括各维度之间的差异,并且根据这个判别函数,将新加入的未知类别的样本进行归类,从这个角度讲,判别分析是从另一个角度对数据进行归类. 判别分析由于要建立判别函数,因此和回归分析类似,也有因变量和自变量,并且因变量应为分类变量,这样才能够最终将数据进行归类,而自变量可以是任意尺度变量,分类变量需要设置为哑变量. 既然和回归分析类似,那么判断分析也有一定的适用条件,这些适用条件也和
SPSS数据分析—生存分析
生存分析是对生存时间进行统计分析的一种技术,所谓生存时间,就是指从某一时间点起到所关心的事件发生的这段时间.这里的时间不一定就是钟表日历上的时间,也有可能是其他的度量单位,比如长度单位等. 生存时间有两个特点: 1.存在删失,是指由于某种原因导致生存时间没用被准确或完整的记录下来,这种情况很常见,如果不存在删失,那么生存分析和一般统计方法没用太大区别,但是一旦出现删失,就必须考虑其影响,一般统计方法将不再适用. 2.生存时间非负,且分布常常右偏,导致基于正态分布理论的常规统计方法不适用.用生存分
SPSS数据分析—多维尺度分析
在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型).多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性.探索性数据分析方法. 基于以上,我们可以得知,多维尺度分析经常使
SPSS数据分析—加权最小二乘法
标准的线性回归模型的假设之一是因变量方差齐性,即因变量或残差的方差不随自身预测值或其他自变量的值变化而变化.但是有时候,这种情况会被违反,称为异方差性,比如因变量为储蓄额,自变量为家庭收入,显然高收入家庭由于有更多的可支配收入,因此储蓄额差异较大,而低收入家庭由于没有过多的选择余地,因此储蓄会比较有计划和规律. 异方差性如果还是使用普通最小二乘法进行估计,那么会造成以下问题 1.估计量仍然具有无偏性,但是不具备有效性2.变量的显著性检验失去意义3.由于估计量变异程度增大,导致模型预测误差增大,精
SPSS数据分析—多重线性回归
只有一个自变量和因变量的线性回归称为简单线性回归,但是实际上,这样单纯的关系在现实世界中几乎不存在,万事万物都是互相联系的,一个问题的产生必定多种因素共同作用的结果. 对于有多个自变量和一个因变量的线性回归称为多重线性回归,有的资料上称为多元线性回归,但我认为多元的意思应该是真的因变量而非自变量的,而且多重共线性这个说法,也是针对多个自变量产生的,因此我还是赞同叫做多重线性回归. 多重线性回归是适用条件和简单线性回归类似,也是自变量与因变量之间存在线性关系.残差相互独立.残差方差齐性,残差呈正态
SPSS数据分析—混合线性模型
之前介绍过的基于线性模型的方差分析,虽然扩展了方差分析的领域,但是并没有突破方差分析三个原有的假设条件,即正态性.方差齐性和独立性,这其中独立性要求较严格,我们知道方差分析的基本思想其实就是细分,将所有对因变量产生影响的因素逐一摘出,但是如果各观测值之间相互影响,这样在细分影响因素的时候,是很难分出到底是自变量的影响还是观测值之间自己的影响.虽然随机抽样会最大程度的使数据满足独立性,但是有时候这种方法并不奏效,比如随机抽取受访者分析其消费特征,这里就假定所有受访者的之间是相互独立的,然而仔细想想
SPSS数据分析—相关分析
相关系数是衡量变量之间相关程度的度量,也是很多分析的中的当中环节,SPSS做相关分析比较简单,主要是区别如何使用这些相关系数,如果不想定量的分析相关性的话,直接观察散点图也可以. 相关系数有一些需要注意的地方: 1.两变量之间存在相关,仅意味着存在关联,并不意味着因果关系.2.相关系数不能进行加减乘除运算,没有单位,不同的相关系数不可比较3.相关系数大小容易受到数据取值区间大小和数据个数大小的影响.4.相关系数也需要进行检验确定其是否有统计学意义 相关系数的假设检验中H0:相关系数=0,变量间没
$用python玩点有趣的数据分析——一元线性回归分析实例
Refer:http://python.jobbole.com/81215/ 本文参考了博乐在线的这篇文章,在其基础上加了一些自己的理解.其原文是一篇英文的博客,讲的通俗易懂. 本文通过一个简单的例子:预测房价,来探讨怎么用python做一元线性回归分析. 1. 预测一下房价 房价是一个很火的话题,现在我们拿到一组数据,是房子的大小(平方英尺)和房价(美元)之间的对应关系,见下表(csv数据文件): 从中可以大致看出,房价和房子大小之间是有相关关系的,且可以大致看出来是线性相关关系.为了简单起见
交完论文才发现spss数据分析做错了
上周,终于把毕业论文交给导师了.然而,今天导师却邮件我,叫我到他办公室谈谈.具体是谈什么呢?我百思不得其解:对论文几次大修小修后,重复率已经低于学校的上限了,论文结构也很完整,我已经在做答辩的ppt了……到了办公室,导师丢给我交给他的论文,叫我自己翻翻看是哪里出了问题.我将论文翻了一遍,发现原来是文章的spss分析做错了,里面的一个分析结果与论文的结论完全相反.由于自己做的太快,看到有结果就直接把分析表格复制粘贴到了论文里,所以完全没看出来.回到宿舍,我苦恼地思考怎么修改.因为太久没用spss了
SPSS数据分析—对数线性模型
我们之前讲Logistic回归模型的时候说过,分类数据在使用卡方检验的时候,当分类过多或者每个类别的水平数过多时,单元格会划分的非常细,有可能会导致大量单元格频数很小甚至为0,并且卡方检验虽然可以分析因素作用,但是无法描述作用的大小和方向,并且无法进一步考察因素间的交互作用,这些都是卡方检验的局限,实际上卡方检验更多的用于行列交叉表,也就是列联表的分析. 以上问题似乎可以使用方差分析解决,但是方差分析仅适用于连续变量,对于分类变量除了可以使用Logistic回归之外,还可以使用对数线性模型,对数
SPSS数据分析—Probit回归模型
Probit含义为概率单位,和Logistic回归一样,Probit回归也用于因变量为分类变量的情况,通常情况下,两种回归方法的结果非常接近,但是由于Probit回归的结果解释起来比较抽象不易理解,因此应用不如Logistic回归那样广泛. Probit回归是基于正态分布理论上进行的,而Logistic回归是基于二项分布,这是二者的区别,当自变量中连续变量较多且符合正态分布时,可以考虑使用Probit回归,而自变量中分类变量较多时,可考虑使用Logistic回归. 在SPSS中,有两个过程可以进
SPSS数据分析—配对Logistic回归模型
Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小, 因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数. SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型
SPSS数据分析—二分类Logistic回归模型
对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能对连续变量进行分析. 使用线性回归模型可以解决上述的部分问题,但是传统的线性模型默认因变量为连续变量,当因变量为分类变量时,传统线性回归模型的拟合方法会出现问题,因此人们继续发展出了专门针对分类变量的回归模型.此类模型采用的基本方法是采用变量变换,使其符合传统回归模型的要求.根据变换的方法不同也就衍
SPSS数据分析—聚类分析
多元分析的主要思想之一就是降维,我们已经讲过了很多降维的方法,例如因子分析.主成分分析,多维尺度分析等,还有一种重要的降维方法,就是聚类分析. 聚类分析实质上就是按照距离远近将数据分成若干个类别,使得类别内的差异尽可能小,类别间的差异尽可能大,它也是一种描述统计方法,并没有涉及假设检验. 由于聚类是根据数据间的距离来进行分类的,因此如何定义距离就成为聚类分析首先要确定的内容,统计学中定义距离的方法有几十种,最常用的是欧氏距离. 聚类的方法体系主要有三种1.非层次聚类代表方法有K-均值聚类法,基本
热门专题
周期方波信号的傅里叶级数matlab
EBS应收无法选择核销对象
python tqdm 上传进度条
maven 多oracle
uuid linux包官网
ubuntu系统外放没有声音
sklearn随即森林教程
trashes文件如何删除
vscode vue-cli无热更新
使用apriori算法时,变量必须是分类变量吗
等待数据库恢复句柄失败
ensp 查看ipv6本地链路地址命令
php-fpm已经启动 9000端口无法访问
sql 去除字符串头尾 空格
和后端对接,使用ajax完成页面交互登录页面
python多线程高并发邮件发送
oracle 生成每15分钟数据
thinkphp 返回update后的结果
javafx 弹出新窗口 模态窗口
dubbo如何在过滤器中对validation异常进行处理